热能与动力工程专业英语译文-第四章译文
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4章火力发电厂
4.1 简介
电站的生产过程利用的是一个封闭的蒸汽动力循环,在这个循环中伴随着水的各种热力过程。有一半的循环包括锅炉(或热源)及其辅助设备;另一半的热力循环则包括汽轮机,发电机,凝汽器,给水泵及给水加热器。
在锅炉中给水被加热成干饱和蒸汽。干蒸汽进一步过热并进入汽轮机的高压缸。过热蒸汽在汽轮机中膨胀,很大比例的热能转化为带动汽轮机转子的动能。汽轮机转子带动发电机产生电能。做功后的蒸汽离开高压缸回到锅炉被再次加热。再热蒸汽进一步在汽轮机中压缸和低压缸中膨胀做功,然后进入凝汽器。
蒸汽在凝汽器这个大型表面式换热器中,通过释放汽化潜热给冷却水(CW)从而被冷凝。主蒸汽在凝汽器中被冷凝成很低压力下的接近饱和的水。凝结成的水从凝汽器排入热井。热井中的水被凝结水泵抽出,经过低压给水加热系统后进入锅炉给水泵。
在现代回热循环中,一部份蒸汽通过布置在汽轮机汽缸上的一系列位于选定的动叶级后的抽汽口进入到凝汽器和给水加热器中。这些蒸汽被用来加热低压加热器中的凝结水及高压加热器中的给水,这些加热器都属于表面式换热器。
给水经锅炉给水泵增压到高于汽包的压力,以足够克服给水经过锅炉汽水系统和高压给水加热系统的压力损失。至此整个循环就完成了。
4.1.1 应用过热的实际循环
朗肯循环向一个更实际的蒸汽循环的首次改进包括提高进入汽轮机蒸汽的温度和压力。
在过热蒸汽循环中,干饱和蒸汽离开锅炉汽包并进一步过热后才能进入汽轮机。由此,提高了循环的效率。这种过热循环选择与先前的朗肯循环具有相同的汽轮机排汽条件。然而,过热蒸汽的一个主要好处在于提高循环蒸汽的温度和压力,使得汽轮机的排汽湿度可以保持在所能承受的物理极限内。
4.1.2 再热循环
由于希望进一步增加循环的条件并由此提高循环效率,于是在汽轮机内的膨胀过程中增加蒸汽的再热循环。再热循环中,额定温度的蒸汽在汽轮机中部分地膨胀做功,然后回到锅炉,被再热到最初的额定温度左右。再热蒸汽进入汽轮机其余部分继续做功,之后进入凝汽器冷凝。
再热循环的引入相比过热循环提高了热效率。同时再热循环也降低了汽轮机排汽的湿度,但也由于增加再热系统进、出锅炉以及布置在炉内的管道带来了基建投资的增加。为了避免单缸情况下机组再热级之间的热梯度过大,汽轮机通常分为高压缸和低压缸。
4.1.3 回热加热系统regenerative feedheating
要完成蒸汽循环的循环过程,必须对其包含的回热系统加以讨论。实际上,一定比例的蒸汽从汽轮机的不同部位被引出,用于加热给水,凝结后返回锅炉。凭借着抽汽释放所有的热量加热给水而很少或基本没有到凝汽器的热量损失,一个简单的朗肯循环能够提高其热效率,但同时由于抽汽没有在汽轮机中膨胀做功而产生一个较小的损失;然而,这项损失远小于循环效率提高所带来的好处。
安装的给水加热器的数量越多,热效率的提高也越多。然而,随着给水加热器数量的增加,每台新增加热器得到的收益却会减少。
4.1.4 超临界机组
一个有效增加热效率的方式是提高蒸汽压力。自然循环锅炉的压力极限在2608.2psi (18MPa)左右,虽然压力较高时可能会用到强制循环,但要想提高电站的整体效率,压力需要被提高到3477.6psi (24MPa)左右,即在水或蒸汽的临界压力之上(3205.2psi (22.12 MPa))。尽管使用超临界压力要求在锅炉设计上进行特殊考虑,但对于汽轮机来说则是压力越高越好。
热效率的进一步改善也许能够通过提高蒸汽温度来获得。尽管有些电站工作在1049℉(565℃),甚至一些早期投运电站的工作温度高达1166℉(630℃),但是,全世界运营的大多数超临界电站都工作在1000.4℉(538℃)。在更高的温度下,经常通过使用两次中间再热来进一步地增加热效率。提高蒸汽温度除了带来增加效率的好处之外,还能够减少汽轮机排汽的湿度从这样先进的最初的情况将否则需要的高级的涡轮尾气水湿。
350-1000兆瓦中所谓的‘超超临界’电站的蒸汽参数为4491.9psi (31MPa)、1094℉(590℃),并且有些被提高到5071.5psi (35MPa) 、1166℉(630℃),这些电站都具有两次中间再热循环,已经或即将投入运行。
两次中间再热循环的使用增加了系统的复杂程度。首先,必须增加额外的锅炉蒸汽温度控制系统,另外汽轮机必须有一个额外的汽缸,或者必须将联合汽缸用于前两次蒸汽膨胀做功。额外汽缸增加了设备的尺寸和费用,而联合的汽缸有可能带来两次膨胀做功之间密封的问题,或冷、热段再热温度过于接近的问题。
只要有足够的时间和资源,这些发展都不存在技术问题。它们的实际应用依赖于潜在的客户,要让客户满意于效率提高的潜在回报,同时不伴随机组寿命、操作灵活性或可用性方面的额外风险。发展方案以及第一个实际大小的原型机组将为此提供必要的保证,方案包含全方位的研究、设计、装配测试,以及原型组件测试。
然而,引进这些电厂的速度尚不确定,这取决于电力需求、燃料成本、经济环境、可替代能源的范围,以及为延长现有电站寿命进行的改造等诸多因素。
4.2 现代蒸汽电厂
锅炉大多应用在电力生产或蒸汽供应这两方面。而某些情况下的应用,则是在发电的同时进行蒸汽供应,我们称之为热电联产。无论哪种应用,锅炉都是一个大系统中的重要组成部分之一。这个大系统的关键子系统包括燃料获取和制备、锅炉和燃烧、环境保护、汽轮发电机组和带有冷却塔的热量排放。
图4-1显示了能够满足当前低污染排放要求的先进的燃煤机组。燃煤机组中最主要的三大部分分别为:(1)锅炉部分,在这部分煤粉燃烧以在炉管中产生蒸汽;(2)发电机部分,包括汽轮发电机组装置,控制蒸汽、凝汽器和冷却水系统。(3)烟气净化处理部分,除掉烟气中的颗粒物和标准规定的污染物。烟气净化处理部分包括选择性催化还原法脱硝装置,接着是去除颗粒物的电除尘器和湿法烟气脱硫装置。煤的选择、烟气系统的设计和运行都要保证污染物排放低于允许的水平。
燃料处理系统存放着燃料供应(在本例中的煤炭),为燃烧准备燃料并且输入锅炉。辅助风系统通过送风机为燃烧器提供空气。锅炉子系统包含有空预器,涉及风煤混合物的燃烧和余热回收,并产生可控的高温、高压蒸汽。经过空预器后的烟气进入除尘器和脱硫(SO2)系统,在这里污染物被收集起来并且飞灰和脱除装置的固体残留物被清除。净化后的烟气通过引风机排入烟囱。
锅炉蒸发水并且在精确的控制条件下供应高温、高压蒸汽。蒸汽进入汽轮发电机组生产电能。在通过多级汽轮机系统的一部分级以后,蒸汽可能会被送回到对流受热面(未显示的再热器),从而在锅炉中接受再热。最终,蒸汽流经汽轮机排入凝汽器,释放残留的热量。水从凝汽器返回到锅炉之前,经过一些水泵和换热器(给水加热器)以提高压力和温度。凝汽器吸收的热量最终通过一个或更多的冷却塔被排入大气。冷却塔或许是电力系统中最显眼的部分。图示的自然通风冷却塔基本上是一个空心圆柱结构,通过空气和水蒸气的流通来吸收凝汽器排放的热量。多数现代电厂都建有这样的冷却塔。
4.3 主要系统和部件
4.3.1 锅炉和主蒸汽系统
锅炉中的水被加热沸腾,转化为干饱和蒸气,然后进入过热器过热。出来的过热蒸汽进入汽