二阶频率响应.

二阶频率响应.
二阶频率响应.

频率响应测试

37030602 王世婷

1、实验目的

1. 掌握频率特性的测试原理及方法;

2. 学习根据所测定出的系统的频率特性,确定系统传递函数的方

法。

2、实验内容

1. 测定给定环节的频率特性。

2. 测定环节构成系统的幅频特性及相频特性,测定输入与输出信号

幅值,然后计算其比值,计算相位差角。

3、实验原理

若正弦输入信号为,则当输出达到稳态时,其输出信号为。改变输入信号频率值,便可测得二组和ψ随f(或ω)变化的数值,此规律即为系统的幅频特性和相频特性。

1. 幅频特性即测量输入与输出信号幅值,然后计算其比值。

2. 实验采用“李沙育图形”法进行相频特性的测试。原理如下:

设有两个正弦信号:

若以X(t)为横轴,Y(t)为纵轴,而以ω作为参变量,则随着的变化,X(t)和Y(t)所确定的点的轨迹,将在X-Y平面上描绘出一条封闭的曲线。此即为物理学上的李沙育图形,如图所示。

图1-1

不同的正弦波(同频率、不同相位、不同幅度)合成的李萨如图形不同,椭圆长轴方向也分为左倾和右倾,如下图所示:

图1-2 左倾图1-3右倾

本文以“/”表示右倾,“\”表示左倾。

3. 相位差角的求法:

对于及,当时,有,,即,显然,仅当时,上式成立。

此实验中,,当椭圆右倾时,,;当椭圆左倾时,,。

4、实验电路及参数设定

1. 系统模拟电路图及系统结构图分别如图1-4及图1-5 。

图1-4 实验电路

图1-5 系统结构图

由各放大器构成的环节传递函数分别为:

比例环节,

积分环节,故。

惯性环节,故,。

最后一个放大器仅为反相器,.

取,为各放大器匹配电阻。

系统开环传递函数为:

系统闭环传递函数为:

取,则

取,则

5、实验设备

硬件:HHMN-1型电子模拟机一台、PC机一台、数字式万用表一块、数据采集板一块。

软件:MATLAB软件,Microsoft Windows XP。

6、实验步骤

1. 熟悉HHMN-1型电子模拟机的使用方法。将各运算放大器接成比

例器,通电调零。

2. 断开电源,按照系统结构图和系统传递函数计算电阻和电容的取

值,并按照模拟线路图搭接线路,不用的运算放大器接成比例

器。

3. 将D/A1与系统输入端UI连接,将A/D1与系统输出端UO连接。

4. 进入实验软件系统,在菜单中选择实验项目,设置相应参数。

5. 按下红色按钮给电容放电,再打开电子模拟机电源。

6. 观测实验结果,记录实验数据,并保存实验结果图形。采用示波

器观察输入输出波形,“XY-Graph”观测李沙育图形。

7. 关闭电源,关闭计算机,整理仪器。

7、实验数据整理

1.K=2时表1-1

12345678910

0.5 1.0 1.5 1.79 2.0 2.5 3.0 3.5 4.0 4.5

3.14 6.289.4211.2512.5715.7118.8522.025.128.3

1111111111

椭圆方///竖直\\\\\\

0.44 1.10 1.80 1.79 1.410.720.410.200.130.08

1.61 1.82 1.92 1.79 1.470.960.640.450.340.27 20lgYm 4.13 5.20 5.67 5.06 3.35-0.35-3.88-6.94--9.37-11.37

0.270.600.9410.960.750.640.440.380.30

-15.7-36.9-70.1-90-106.3-131.4-140.2-153.9-157.7-162.5其中,,当椭圆右倾时,,;当椭圆左倾时,,。

依据上表数据绘制幅频特性与相频特性如下:

图1-6 K=2时对数幅频特性

图 1-7 K=2时对数相频特性

由幅频特性与相频特性曲线特点可知,此为二阶系统。因时,,故。故

系统实际闭环传递函数为:。

系统理论闭环传递函数为:

,波特图如下:

图1-8 系统理论波特图

相比之下,有较大出入。且最大幅值Ym不出现在频率为时,与理论相

矛盾,可能由仪器测量误差引起。

2. K=5时表1-2

12345678910

0.5 1.0 1.5 2.0 2.5 2.7 3.0 3.5 4.0 4.5

3.14 6.289.4212.5715.7116.9618.8522.025.128.3

1111111111

椭圆方/////竖直\\\\

0.180.410.78 1.63 2.68 2.78 2.36 1.130.640.35

1.58 1.71 1.99

2.43 2.84 2.78 2.45 1.66 1.150.86 20lgYm

3.97

4.66

5.987.719.078.887.78 4.40 1.21-1.3

0.110.240.390.670.9410.960.680.560.41

-6.3-13.9-23.0-42.1-70.1-90-106.3-137.2-145.9-155.8同样的,其中,,当椭圆右倾时,,;当椭圆左倾时,,。

w/rad/s

图1-9 K=5时对数幅频特性

图1-10 K=5时对数相频特性

由幅频特性与相频特性曲线特点可知,此为二阶系统。因时,,故。故系统实际闭环传递函数为:。

系统理论闭环传递函数为:

,波特图如下:

图1-11 系统理论波特图

相比之下,仍有较大出入。此次且最大幅值Ym基本上出现在频率为处。

3. 一组图像

图1-12 输入输出正弦波

图1-13 李萨如图形(左倾)

注:当时截图时很可惜未对应。

8、误差分析:

1. 可能由仪器精度引起测量误差;

2. 补偿电阻有误差,不能完全抑制零点漂移;

3. 作为用来设置系统参数的电阻由万用表测得,可能不够准确。

4. 本实验的不足之处:频率较小和较大时取点不足,起始及结尾

处有部分特性未显示出来,如结尾处幅频特性的一直下降趋势

和相频特性的平缓趋势。

9、实验结论

1. 由图可知,二阶欠阻尼系统的幅度先增大再减小,最终衰减趋于零。

2. 该实验中(即K=2)时比(即K=5)时的谐振峰值小。故对于二阶系统,其实际幅频特性曲线与阻尼比有关,阻尼比较小时,有谐振峰值出现,对应相位为。

3. 二阶系统的对数相频曲线对点具有奇对称性质。

4. 二阶系统的对数幅频特性曲线最后下降趋势斜率约为- 40dB/十倍频。

二阶系统的阶跃响应及频率特性

实验二二阶系统的阶跃响应及频率特性 实验简介:通过本实验学生能够学习二阶系统的频率响应和幅频特性的测试方法,对实验装置和仪器的调试操作,具备对实验数据、结果的 处理及其与理论计算分析比较的能力。 适用课程:控制工程基础 实验目的:A 学习运算放大器在控制工程中的应用及传递函数的求取。 B 学习二阶系统阶跃响应曲线的实验测试方法。 C 研究二阶系统的两个重要参数ζ、ω n 对阶跃瞬态响应 指标的影响。 D 学习频率特性的实验测试方法。 E 掌握根据频率响应实验结果绘制Bode图的方法。 F 根据实验结果所绘制的Bode图,分析二阶系统的主要 动态特性(M P ,t s )。 面向专业:机械类 实验性质:综合性/必做 知 识 点:A《模拟电子技术》课程中运算放大器的相关知识; B《数字电子技术》课程中采样及采样定理的相关知识; C《机械工程控制基础》课程中,传递函数,时域响应, 频率响应三章的内容。 学 时 数:2 设备仪器:XMN-2自动控制原理学习机,CAE-98型微机接口卡,计算机辅助实验系统2.0软件,万用表。 材料消耗:运算放大器,电阻,电容,插接线。 要 求:实验前认真预习实验指导书的实验内容,完成下述项目, 做实验时交于指导教师检查并与实验报告一起记入实验成绩。 B推导图2所示积分放大器的输出输入时域关系和传递函数。

C 推导图3所示加法和积分放大器的输出输入时域关系(两输入单输出) 和S <1>.写出op1,op2,op9,0p6对应的微分方程组(4个方程)。 <2>.画出系统方框图。 <3>.用方框图化简或方程组联立消元的方法求取实验电路所示系统的 传递函数,写出求解过程。 和ζ。 <4>.求取该系统的ω n 实验地点:教一楼327室 实验照片:实验装置及仪器

实验二实验报告

PAM和PCM编译码器系统 一、实验目的 1.观察了解PAM信号形成的过程;验证抽样定理;了解混叠效应形成的原因; 2.验证PCM编译码原理;熟悉PCM抽样时钟、编码数据和输入/输出时钟之间的关系;了 解PCM专用大规模集成电路的工作原理和应用。 二、实验内容和步骤 1.PAM编译码器系统 1.1自然抽样脉冲序列测量 (1)准备工作; (2)PAM脉冲抽样序列观察; (3)PAM脉冲抽样序列重建信号观测。 1.2平顶抽样脉冲序列测量 (1)准备工作; (2)PAM平顶抽样序列观察; (3)平顶抽样重建信号观测。 1.3信号混叠观测 (1)准备工作 (2)用示波器观测重建信号输出的波形。 2.PCM编译码器系统 2.1PCM串行接口时序观察 (1)输出时钟和帧同步时隙信号的观察; (2)抽样时钟信号与PCM编码数据测量; 2.2用示波器同时观察抽样时钟信号和编码输出数据信号端口(TP502),观测时以TP504 同步,分析掌握PCM编码输数据和抽样时钟信号(同步沿、脉冲宽度)及输出时钟的对应关系; 2.3PCM译码器输出模拟信号观测,定性观测解码信号与输入信号的关系:质量,电平, 延时。 2.4PCM频率响应测量:调整测试信号频率,定性观察解码恢复出的模拟信号电平,观测 输出信号电平相对变化随输入信号频率变化的相对关系; 2.5PCM动态范围测量:将测试信号频率固定在1000Hz,改变测试信号电平,定性观测解 码恢复出的模拟信号的质量。 三、实验数据处理与分析 1.PAM编译码器系统 (1)观察得到的抽样脉冲序列和正弦波输入信号如下所示:

上图中上方波形为输入的正弦波信号,下方为得到的抽样脉冲序列,可见抽样序列和正弦波信号基本同步。 (2)观测得到的重建信号和正弦波输入信号如下所示: 如上图所示,得到的重建信号也为正弦波,波形并没有失真。 (3)平顶抽样的脉冲序列如下所示: 上图中上方的波形为输入的正弦波信号,下方为PAM平顶抽样序列。 (4)平顶抽样的重建信号波形: 可见正弦波经过平顶抽样,最终重建的信号仍为正弦波。 (5)观察产生混叠时的重建信号的输出波形 在实验时将输入的正弦波频率调至7.5KHz,通过示波器观察得到的输入正弦波波形和输出的重建信号如下所示: 由于实验时采用的抽样频率为8KHz,所以当输入的信号频率为7.5KHz时已经不满足抽样定理的要求了,所以会产生混叠误差,导致了输出的重建波形如上图所示,不再是正弦波了。 从测量结果可以得出如下规律:随着输入正弦波信号的频率逐渐升高,输出重建波形的幅值逐渐降低。这是由于在实验电路中加入了抗混滤波器,该滤波器随着频率的升高会使处理的信号的衰减逐渐变大,所以如试验结果所示,随着输入信号频率的升高,输出信号的幅值在逐渐变小。 (7) 在不采用抗混滤波器时输入与输出波形之间的关系,得到的结果如下表所示:

各种谱计算,频响函数,传递率

各种谱计算,频响函数,传递率 阅读:22802006-05-25 22:01 A.信号与谱的分类 由于时域信号有不同的分类, 变换后对应的频域也有不同的谱 信号可分为模拟(连续)信号和数字(离散)信号, 连续信号变换后称为谱密度, 离散信号变换 后称为谱. 连续信号又可分为绝对可积,平方可积(能量有限),均方可积(功率有限) 绝对可积信号有傅里叶谱(线性谱)和傅里叶谱密度(线性谱密度),如时域信号单位为电压V, 则前者单位为V,后者单位为V/Hz. 均方可积信号有功率谱PS(单位为V2)和功率谱密度PSD(单位为V2/ Hz.). 平方可积信号有能量谱密度ESD(单位为V2 s / Hz.). 注1 平方量称为功率,平方量乘秒称为能量,谱分量除以频率称为谱密度. 注2 功率谱密度另一定义(离散信号的功率谱密度)见下述, 连续信号的功率谱密度. 为连续(光滑)曲线, 离散信号的功率谱密度为不连续的阶梯形.. 注3 随机信号求功率谱密度时为减少方差,可采用平均,重叠和加窗处理(Welch法). 数字信号又可分为绝对可和,平方可和,均方可和. B.各种谱计算 1. 线性谱Linear Spectrum: 对时域离散信号作DFT(离散傅里叶变换)得到, 采用方法为FFT(快速傅里叶变换)法.X(f)=FFT(x(t)) 2. 自功率谱APS=Auto Power Spectrum: 离散信号的线性谱乘其共轭线性谱 APS(f)=X(f)*conj(X(f)), conj=conjugate共轭(实部不变,虚部变符号). 3. 互功率谱CPS=Cross Power Spectrum::x(t)的线性谱乘y(t)的共轭线性谱 互功率谱是复数,可表示为幅值和相位或实部和虚部等. CPS(f)=X(f) *conj(Y(f)) Y(f)=FFT(y(t)) 4. (自)功率谱密度PSD(=Power Spectrum Density): PSD(f)=APS(f)/Δf Δf—频率分辨率(Hz), 自功率谱密度与自相关函数成傅立叶对应关系 故功率谱密度也称为规一化的功率谱. 5. 互功率谱密度CSD=CPS(f)/Δf A.频响函数FRF, 传递率 A1.频响函数.FRF为响应的傅里叶变换与力的傅里叶变换之比或力和响应的互谱与力的自谱之比后者可通过平均减少噪声,故较常用. H(f)=X(f ) / F(f)=X(f)*conj(F(f)) / F(f)*conj(F(f))=CPS / APS. A2. 频响函数有三种表达形式 频响函数表达成分子多项式与分母多项式(特征多项式)之比,也称有理分式. (两多项式求根后) 频响函数表达成极点,零点和增益ZPK形式. 频响函数表达成部分分式,也称极点留数形式,( 部分分式的分子项称为留数.), 例如:最常见的单自由度(位移)频响函数H(ω)=X(ω)/F(ω)

视觉分辨率及空间频率响应测试实验报告

视觉分辨率及空间频率响应(SFR)测试实验报告 班级:学号:姓名: 一、实验目的: 1、理解数码相机视觉分辨率的定义及其度量单位。 2、了解数码相机分辨率测试标准ISO12233以及GB/T 19953-2005《数码相机分辨率的测量》,熟悉测试标板构成,掌握其使用方法。 3、掌握数码相机视觉分辨率测试方法,能够通过目视判别数码相机的分辨率特性。 4、了解数码相机空间频率响应(SFR)的测试原理,理解空间频率响应(SFR)曲线的含义。 5、掌握数码相机空间频率响应(SFR)的测试方法,能够通过SFR曲线判别数码相机的分辨率特性。 二、实验要求: 1、使用数码相机拍摄ISO12233标准分辨率靶板,要求连续拍摄三幅图。 2、目视判别数码相机的视觉分辨率,需分别判别水平、垂直、和斜45度方向的视觉分辨率(注意:若拍摄的靶板有效区域高度仅占据相机幅面高度的一部分,需将目视判别结果乘以修正系数以得到真实的测量结果。修正系数=以像素为单位的相机幅面高度/以像素为单位的靶板有效区域高度)。 3、使用Imatest软件测量数码相机空间频率响应(SFR)曲线,需分别测量水平及垂直方向的SFR,并取MTF50、MTF20作为测量结果,与视觉分辨率测试结果进行比较。 4、独立完成实验报告,需明确相机型号、相机基本设置、并包含所拍摄图案以及判别结果和相应说明。 三、实验过程 在光学测量实验室使用手机(iPhone6s)连续拍摄三张ISO12233标准分辨率靶板。拍摄过程中使手机上下屏幕边缘尽量与靶板上下边缘对齐,以减小修正系数。其中使用的相机参数如下:

拍摄的照片如下: 照片一(修正系数为)

实验三 二阶系统频率响应

实验三 二阶系统频率响应 一、实验目的 (1)学习系统频率特性响应的实验测试方法。 (2)了解二阶闭环系统中的对数幅频特性和相频特性的计算。 (3)掌握根据频率响应实验结果绘制波特图的方法。 (4)掌握欠阻尼二阶闭环系统中的自然频率、阻尼比对谐振频率、谐振峰值和带宽的影响及对应的计算。 二、实验设备 (1)XMN-2型学习机; (2)CAE-USE 辅助实验系统 (3)万用表 (4)计算机 三、实验内容 本实验用于观察和分析二阶系统瞬态响应的稳定性。 二阶闭环系统模拟电路如图3-1所示,它由两个积分环节(OP1和OP2)及其反馈回路构成。 图3-1 二阶闭环系统模拟电路图 OP1和OP2为两个积分环节,传递函数为s T s G i 1 )(-=(时间常数RC T i =)。二阶闭环系统等效结构图如图3-2所示。 图3-2 二阶闭环系统等效结构图 该二阶系统的自然振荡角频率为RC T n 11==ω,阻尼为i f R R K 22= =ζ。 四、实验步骤 (1)调整Rf=40K ,使K=0.4(即ζ=0.2);取R=1M ,C=1μ,使T=1秒(ωn=1/1)。 (2)输入信号位)sin(t X ω=,改变角频率使ω分别为 0.2,0.6,0.8,0.9,1.0,1.2,1.6,2.0,3.0rad/s 。稳态时,记录下输出响应)sin(φω+=t Y y 五、数据采集及处理 输出信号幅值Y 输出信号初相φ L(ω) φ(ω) ω(rad/s) T 0.2 0.6 0.8 0.9 1.0 1.2

1.6 2.0 3.0 六、实验报告 1、绘制系统结构图,并求出系统传递函数,写出其频率特性表达式。 2、用坐标纸画出二阶闭环系统的对数幅频、相频曲线(波特图)。 3、其波特图上分别标示出谐振峰值(Mr)、谐振频率(ωr)和带宽频率(ωb)。 4、观察和分析曲线中的谐振频率(ωr)、谐振峰值(Mr)和带宽(ωb),并与理论计算值作对比。

频响函数用于转子振动信号诊断

A frequency response function-based structural damage identi?cation method Usik Lee *,Jinho Shin Department of Mechanical Engineering,Inha University,253Yonghyun-Dong,Nam-Ku,Incheon 402-751,South Korea Received 9March 2001;accepted 9October 2001 Abstract This paper introduces an frequency response function (FRF)-based structural damage identi?cation method (SDIM)for beam structures.The damages within a beam structure are characterized by introducing a damage distribution function.It is shown that damages may induce the coupling between vibration modes.The e?ects of the damage-induced coupling of vibration modes and the higher vibration modes omitted in the analysis on the accuracy of the predicted vibration characteristics of damaged beams are numerically investigated.In the present SDIM,two feasible strategies are introduced to setup a well-posed damage identi?cation problem.The ?rst strategy is to obtain as many equations as possible from measured FRFs by varying excitation frequency as well as response measurement point.The second strategy is to reduce the domain of problem,which can be realized by the use of reduced-domain method in-troduced in this study.The feasibility of the present SDIM is veri?ed through some numerically simulated damage identi?cation tests.ó2002Elsevier Science Ltd.All rights reserved. Keywords:Structural damage;Damage identi?cation;Beams;Frequency response function;Damage-induced modal coupling;Reduced-domain method 1.Introduction Existence of structural damages within a structure leads to the changes in dynamic characteristics of the structure such as the vibration responses,natural fre-quencies,mode shapes,and the modal dampings.Therefore,the changes in dynamic characteristics of a structure can be used in turn to detect,locate and quantify the structural damages generated within the structure.In the literature,there have been appeared a variety of structural damage identi?cation methods (SDIM),and the extensive reviews on the subject can be found in Refs.[1–3]. The ?nite element model (FEM)update techniques have been proposed in the literature [4–9].As a draw- back of FEM-update techniques,the requirement of reducing FEM degrees of freedom or extending the measured modal parameters may result in the loss of physical interpretability and the errors due to the sti?-ness di?usion that smears the damage-induced localized changes in sti?ness matrix into the entire sti?ness matrix.Thus,various experimental-data-based SDIM have been proposed in the literature as the alternatives to the FEM-update techniques. The experimental-data-based SDIM depends on the type of data used to detect,locate,and/or quantify structural damages.They include the changes in modal data [10–18],the strain energy [19,20],the transfer function parameters [21],the ?exibility matrix [22,23],the residual forces [24,25],the wave characteristics [26],the mechanical impedances [27,28],and the frequency response functions (FRFs)[29–31].Most of existing modal-data-based SDIM have been derived from FEM model-based eigenvalue problems. As discussed by Banks et al.[32],the modal-data-based SDIM have some shortcomings.First,the modal * Corresponding author.Tel.:+82-32-860-7318;fax:+82-32-866-1434. E-mail address:ulee@inha.ac.kr (U.Lee). 0045-7949/02/$-see front matter ó2002Elsevier Science Ltd.All rights reserved.PII:S 0045-7949(01)00170-5

一二阶系统频率特性测试与分析

广西大学实验报告纸 姓名: 指导老师:胡老师 成绩: 学院:电气工程学院 专业:自动化 班级:121 实验内容:零、极点对限性控制系统的影响 2014年 11月 16 日 【实验时间】2014年11月14日 【实验地点】宿舍 【实验目的】 1. 掌握测量典型一阶系统和二阶系统的频率特性曲线的方法; 2. 掌握软件仿真求取一、二阶系统的开环频率特性的方法; 3. 学会用Nyquist 判据判定系统的稳定性。 【实验设备与软件】 1. labACT 实验台与虚拟示波器 2. MATLAB 软件 【实验原理】 1.系统的频率特性测试方法 对于现行定常系统,当输入端加入一个正弦信号)sin()(t X t X m ωω=时,其稳态输出是一个与输入信号频率相同,但幅值和相位都不同的正弦信号 )sin()()sin()(ψωωψω+=+=t j G X t Y s Y m m 。 幅频特性:m m X Y j G /)(=ω,即输入与输出信号的幅度比值,通常转换成)(lg 20ωj G 形式。 相频特性:)(arg )(ωω?j G =,可以直接基于虚拟示波器读取,也可以用“李沙育图行”法得到。 可以将用Bode 图或Nyquist 图表示幅频特性和相频特。 在labACT 试验台采用的测试结构图如下:

被测定稳定系统对于实验就是有源放大电路模拟的一、二阶稳定系统。 2.系统的频率测试硬件原理 1)正弦信号源的产生方法 频率特性测试时,一系列不同频率输入正弦信号可以通过下图示的原理产生。按照某种频率不断变化的数字信号输入到DAC0832,转换成模拟信号,经一级运放将其转换为模拟电压信号,再经过一个运放就可以实现双极性电压输出。 根据数模转换原理,知 R V N V 8 012- = (1) 再根据反相加法器运算方法,得 R R R V N V N V R R V R R V 1281282282201210--=??? ??+-?-=??? ? ??+-= (2) 由表达式可以看出输出时双极性的:当N 大于128时,输出为正;反之则为负;当输入为128时,输出为0. 在labACT 实验箱上使用的参考电压时5V 的,内部程序可以产生频率范围是对一阶系统是0.5 H Z ~64H Z 、对二阶系统是0.5 H Z ~16 H Z 的信号,并由B2单元的OUT2输出。

频率响应测量的方法

频率响应测量的方法 频率响应测量的方法很多,一般同使用的测试信号有关。 可分为:i. 点测法:完全按定义设计的测量方法,逐个频率输入振幅恒定的正弦信号,逐个点测量相应频率扬声器输出声压级,在频率响应坐标纸上绘出相应的点,把这些不连续的点的平滑连线即为频率响应曲线。测量耗时、测量有限的非连续频率点,过渡点是推测的。 ii. 扫频自动记录法:使用机械传动的方法改变振荡电路中的电容,使信号的频率连续改变,输出电压恒定,这叫扫频信号,记录仪上记录纸的频率刻度与信号源同步,记录扬声器的输出声压级随频率的变化,即为频率响应曲线,这方法叫扫频自动记录法。后来,机械扫频信号改成电压控制频率的压控振荡器,改进了机械传动的麻烦。这是60~80年代丹麦B&K 公司为代表的测量技术。扫频自动测量原理大约已有40年的历史,其测量原理没有变化,改变的只是使用的技术,譬如扫频信号的产生方法,测量传声器测得的数据的采集、处理、运算和输出数据和曲线都可以由计算机完成。其中需要特别一提的是:对扫频信号的理解和生成技术,连续扫频信号过去理解为点频信号随时间变化,但点频信号是一个连续周期信号,从示波器看到的是一个按周期重复的正弦波形,而扫频信号没有一个频率是经历时间周期的,随扫频时间变化的是它的瞬时频率。瞬时频率数学上是相位对时间的微分。可以这样理解:譬如f=100Hz正弦信号的周期是T=0.01秒,其走过的相位φ= 2π弧度(360°),而f=200Hz时,T=0.005秒,其走过的相位仍然是φ= 2π弧度,这样,一个微小时间内的相位变化(等效于相位对时间的微分)同周期成反比,相当于稳态频率。同稳态信号不同的是它引入扫频速率(S:Hz/s)的概念,瞬时频率fi =S t +f0;t为扫频时间;f0为扫频初始频率。t和f0确定扫频频率范围。稳态单频信号的公式是u(t)=Acos(2πft);f为稳态单频信号的频率。而扫频信号的公式是u(t)=ACos(πSt2),B&K公司的2012音频分析仪的TSR(时选响应)技术中使用的测试信号,就是采用该数学模型生成的信号。 iii. 阶步步进的猝发声测量。猝发声是若干个周期的正弦信号脉冲,或称正弦波列。它由连续周期信号加一时间控制电路组成,当测量声压级的时间窗正好在猝发声的稳定部分时,它更接近点频测量。由一个个不同频率的猝发声组成一个阶步步进的猝发声,用对应的跟踪滤波器跟踪每一个猝发声,类似点频测量得到扬声器的频率响应。美国ATI公司的扬声器测量系统LMS使用的正是这种信号源,它最多可以在一个十进制频率范围内设置200个猝发声频率点,即频率阶步的间隔是1/60倍频程。 iv. 多频音(Muiti-tone Burst也叫多频猝发声)它是数字生成的M个纯音信号的叠加的一个短时间间隔的信号,该时间间隔对M个频率来说正好都是整周期的,并且这由低到高M个频率之间没有谐波关系,即2个频率相除(大数除小数)的商不会是整数。例如:14.5,31.9,37.7,49.3,55.1……Hz;可以排列成一个数列,选择适当的频率间隔,组成M个频率的多频音。其M个频率的同步FFT即为基频即幅频响应,由其谐波可以实现其谐波失真测量。该技术使用在AP公司的“系统1”和“系统2”的仪器上。 v. 脉冲数字测量技术上面所有的方法都离不开正弦信号,只是频率的连续变化、频率的阶步变化和有限频率成分的合成信号,脉冲信号和MLS信号需要进行时域(时间波形)和频域(频率响应和频率分析)之间的变换,从中可以得到更多信息,它作用于被测系统后的输出响应,经过变换和运算可以得到被测系统的许多信息,这需要对测试信号有充分了解,涉及信号与系统的基本理论,又要借助数字信号处理技术进行变换运算。单脉冲信号的性质,

实验二:频率响应测试

成绩 北京航空航天大学 自动控制原理实验报告 院(系)名称自动化科学与电气工程学院 专业名称自动化 学生学号13191006________ 学生________ 万赫__________ 指导老师_____ 王艳东 自动控制与测试教学实验中心

实验二频率响应测试 实验时间2015.11.13 实验编号30 同组同学无 一、实验目的 1、掌握频率特性的测试原理及方法 2、学习根据所测定出的系统的频率特性,确定系统传递函数的方法 目的。 二、实验容 1. 测定给定环节的频率特性。 2. 系统模拟电路图如下图: 系统结构图如下图:

系统的传递函数: 取R=100KΩ,则G(s)=错误!未找到引用源。 取R=200KΩ,则G(s)=错误!未找到引用源。 取R=500KΩ,则G(s)=错误!未找到引用源。 若正弦输入信号为Ui(t)=A1Sin(ωt),则当输出达到稳态时,其输出信号为 Uo(t)=A2Sin(ωt+ψ)。改变输入信号频率f=错误!未找到引用源。值,便可测得二组A1/A2和ψ随f(或ω)变化的数值,这个变化规律就是系统的幅频特性和相频特性。 三、实验原理 1. 幅频特性即测量输入与输出信号幅值A1及A2,然后计算其比值A2/A1。 2. 实验采用“沙育图形”法进行相频特性的测试。 设有两个正弦信号: X(ωt)=XmSin(ωt) ,Y(ωt)=YmSin(ωt+ψ) 若以X(t)为横轴,Y(t)为纵轴,而以ω作为参变量,则随着ωt的变化,X(t)和Y(t)所确定的点的轨迹,将在X-Y平面上描绘出一条封闭的曲线。这个图形就是物理学上成称

频谱分析仪的响应函数

什么是频率响应函数 动态信号分析仪的一个常见应用是测量机械系统的频率响应函数(FRF)。这也称为网络分析,系统的输入和输出同时测量。通过这些多通道测量,分析仪可以测量系统如何“改变”输入。一个常见的假设是,如果系统是线性的,那么这个“变化”被频率响应函数(FRF)充分描述。事实上,对于线性和稳定的系统,只要知道频率响应函数,就可以预测系统对任何输入的响应。 宽带随机、正弦、阶跃或瞬态信号在测试和测量应用中被广泛地用作激励信号。图1说明了一个激励信号x,可以应用于一个UUT(测试单元),并生成一个或多个由y表示的响应,输入和输出之间的关系称为传递函数或频率响应函数,由H(y,x)表示。一般来说,传递函数是一个复杂的函数,描述系统如何将输入信号的大小和相位作为激励频率的函数。 在各种激励条件下,对UUT系统的特性进行了实验测量。这些特征包括:频率响应函数(FRF),通过以下参量描述: 增益频率函数。相位频率函数。共振频率,阻尼因素,总谐波失真,非线性。 利用宽带随机激励的FFT、交叉功率谱法测量频率响应。宽带激励可以是高斯分布的真随机噪声信号,也可以是一个伪随机信号,其振幅分布可以由用户来

定义。宽带这一术语可能具有误导性,因为一个好的实现的随机激励信号应该是频带有限的,并由分析频率范围的上限控制。也就是说,激励不应该激发高于测量仪器所能测量的频率。随机发生器只产生频宽在分析频率范围内随机信号。这也将把激发能量集中在有用的频率范围,以提高测试动态范围。 宽带随机激励的优点是它能在短时间内激发宽频段,因此总测试时间较短。宽带激励的缺点是其频率能量在短时间内广泛传播。每个频率点激发的能量贡献远小于总信号能量(大概是-30到-50dB小于总数)。即使对于频率响应函数(FRF)估计有一个大的平均数字,宽带信号也不能有效地测量UUT的极端动态特性。 扫频正弦测量,优化了每个频率点的测量值。由于激励信号是一个正弦波,在某一时刻其所有的能量都集中在一个频率上,改进了宽带激励中的动态范围不足的缺点。此外,如果频率响应幅值大小下降,响应的跟踪滤波器可以帮助接收到非常小的正弦信号。只要优化每个频率的输入范围,就可以将测量的动态范围扩展到150分贝以上。 频率响应函数的应用 频率响应函数的应用很广,其中测试试件的固有频率是基础应用,可以有效的避免共振频率。试件由于材质、材料属性、形状的不同会影响自身刚度和质量。它的固有频率只受刚度分布和质量分布的影响,阻尼对固有频率的影响有限。质量增大固有频率必然降低,刚度增大固有频率必然增大。 理论上讲,试件有多阶固有频率。在二维频谱图中,并不是所有的峰值对应的都是固有频率,因为有可能是激励频率或是它的倍频。因此通常通过测量频响

自动控制原理学生实验:二阶开环系统的频率特性曲线

实验三 二阶开环系统的频率特性曲线 一.实验要求 1.研究表征系统稳定程度的相位裕度γ和幅值穿越频率c ω对系统的影响。 2.了解和掌握欠阻尼二阶开环系统中的相位裕度γ和幅值穿越频率c ω的计算。 3.观察和分析欠阻尼二阶开环系统波德图中的相位裕度γ和幅值穿越频率ωc ,与计算值作比对。 二.实验内容及步骤 本实验用于观察和分析二阶开环系统的频率特性曲线。 由于Ⅰ型系统含有一个积分环节,它在开环时响应曲线是发散的,因此欲获得其开环频率特性时,还是需构建成闭环系统,测试其闭环频率特性,然后通过公式换算,获得其开环频率特性。 自然频率:T iT K = n ω 阻尼比:KT Ti 2 1= ξ (3-2-1) 谐振频率: 2 21ξωω-=n r 谐振峰值:2 121lg 20)(ξ ξω-=r L (3-2-2) 计算欠阻尼二阶闭环系统中的幅值穿越频率ωc 、相位裕度γ: 幅值穿越频率: 24241ξξωω-+? =n c (3-2-3) 相位裕度: 4 24122arctan )(180ξξξω?γ++-=+=c (3-2-4) γ值越小,Mp%越大,振荡越厉害;γ值越大,Mp%小,调节时间ts 越长,因此为使 二阶闭环系统不致于振荡太厉害及调节时间太长,一般希望: 30°≤γ≤70° (3-2-5) 本实验所构成的二阶系统符合式(3-2-5)要求。 被测系统模拟电路图的构成如图1所示。 图1 实验电路 本实验将数/模转换器(B2)单元作为信号发生器,自动产生的超低频正弦信号的频率从低到高变化(0.5Hz~16Hz ),OUT2输出施加于被测系统的输入端r (t),然后分别测量被测系统的输出信号的开环对数幅值和相位,数据经相关运算后在虚拟示波器中显示。 实验步骤: (1)将数/模转换器(B2)输出OUT2作为被测系统的输入。 (2)构造模拟电路:安置短路套及测孔联线表同笫3.2.2 节《二阶闭环系统的频率特性曲线测试》。 (3)运行、观察、记录: ① 将数/模转换器(B2)输出OUT2作为被测系统的输入,运行LABACT 程序,在界面 的自动控制菜单下的线性控制系统的频率响应分析-实验项目,选择二阶系统,就会弹出虚拟示波器的界面,点击开始,实验开始后,实验机将自动产生0.5Hz~16H 等多种频率信号,等待将近十分钟,测试结束后,观察闭环对数幅频、相频曲线和幅相曲线。 ② 待实验机把闭环频率特性测试结束后,再在示波器界面左上角的红色‘开环’或‘闭

实验二放大器输入、输出电阻和频响特性的测量

实验二 放大器输入、输出电阻和频响特性的测量 一、实验目的 掌握放大器输入电阻、输出电阻和频率特性的测量原理和方法。 二、实验原理 1.放大器输入电阻R i 的测试 最简单的测试方法是“串联电阻法”。其原理如图2-1所示,在被测放大器与信号源之间串入一个已知标准电阻R i ,只要分别测出放大器的输入电压U i 和输入电流I i ,就可以求出: R i =V i /I i = n R i R U U /=R i U U ?Rn 但是,要直接用交流毫伏表或示波器测试Rn 两端的电压U R 是有困难的,因U R 两端不接地。使得测试仪器和放大器没有公共地线,干扰太大,不能准确测试。为此,通常是直接测出U S 和U i 来计算R i ,由图不难求出: R i = i S i U U U -? Rn 注:测R i 时输出端应该接上R L ,并监视输出波形,保证在波形不失真的条件下进行上述测量。 S U 图2-1放大电路输入端模型 2.放大器输出电阻R o 的测试 放大器输出端可以等效成一个理想电压源U o 和R o 相串联,如图2-3所示。 在放大器输入端加入U S 电压,分别测出未接和接入R L 时放大器的输出电压U o 和U L 值,则 L L R U U R )1( 0-= 注意:要求在接入负载R L (或R W )的前后,放大器的输出波形都无失真。

501mA β==CQ ,I , 212*c B b p E R V R R R = ++12*5.1 1.7,10 5.1 p V R ==++ 20.9p R K =Ω 2626200(1) 200(1) 1.526,1be EQ mv mv r K I mA ββ=++=++=Ω 12()//// 1.13,i b p b be R R R R r K =+=Ω 3o c R R K ==Ω

一阶网络频响特性测量

一阶网络频响特性测量 信号与系统实验报告 实验名称: 一阶网络频响特性测量 姓名: 姚敏 学号: 110404212 班级: 通信(2)班 时间: 2013.6.7 南京理工大学紫金学院电光系 一、实验目的 1、掌握一阶网络的构成方法; 2、掌握一阶网络的系统响应特性; 3、了解一阶网络频响特性图的测量方法; 二、实验基本原理 系统响应特性是指系统在正弦信号激励下,稳态响应随信号频率变化而变化的特性,称为系统的频率响应特性(frequency response)简称频响特性。 一阶系统是构成复杂系统的基本单元。学习一阶系统的特点有助于对一般系统特性的了解。一阶系统的系统函数为H(s),表达式可以写成: 1H(s),k, k为一常数 (3-1) s,, 激励信号x(t)为: xtEt()sin(),, (3-2) m0 按照系统频响特性的定义可求得该一阶系统的稳态响应为: ytEHt()sin(),,,,(3-3) ssm000 j,0H(s)|,H(j,),H(j,)eH,H(j,)其中,。,,,,sj,,00000

可见,当改变系统输入信号的频率时,稳态响应的幅度和相位也随之而改变。 1,k,,,,0因果系统是稳定的要求:,不失一般性可设。该系统的频响,特性为: 1H(j,), (3-4) j,,,1 1从其频响函数中可以看出系统响应呈低通方式,其3dB带宽点。系统的频,响特性图如下图: , 图1 一阶网络频响特性图 一阶低通系统的单位冲击响应与单位阶跃响应如下图: 图2 一阶网络单位冲击响应与单位阶跃响应图 三、实验内容及结果 1、填写表1: 输入信号频输出信号幅度(mV) 相对幅度(dB) 相位差() ,,,21率f0 10Hz 1.96V -0.175 -181.4 1kHz 1.68V -1.514 -212.6 2kHz 1.27V -3.945 -229.7 3kHz 952mV -6.448 118.0 4kHz 760mV -8.404 114.0 5kHz 628mV - 10.061 108.9 6kHz 524mV -11.634 105.7 7kHz 456mV -12.841 -255.7 8kHz 400mV -13.979 102.2 9kHz 360mV -14.895 101.9 10kHz 324mV -15.810 100.7

离散系统的频率响应分析

实验报告 实验课程:数字信号处理 实验内容:实验4 离散系统的频率响应分析和零、极点分布 院(系):计算机学院 专业:通信工程 班级:111班 2013年6 月7日

一、实验目的:加深对离散系统的频率响应分析和零、极点分布的概念理解。 二、实验原理: 离散系统的时域方程为 ∑∑==-=-M k k N k k k n x p k n y d ) ()( 其变换域分析方法如下: 时频域变换 )()()(][][][][][ω ωωj j j m e H e X e Y m n h m x n h n x n y =?-= *=∑ ∞ -∞ = 系统的频率响应为 ω ωω ωω ωω jN N j jM M j j j j e d e d d e p e p p e D e p e H ----++++++==......)()()(1010 时域Z 域变换 ) ()()(][][][][][z H z X z Y m n h m x n h n x n y m =?-= *=∑∞ -∞ = 系统的转移函数为 N N M M z d z d d z p z p p z D z p z H ----++++++= =......)()()(110110 分解因式 ∏-∏-=∑∑= =-=-=-=-N i i M i i N i i k M i i k z z K z d z p z H 1111 0)1()1()(λξ 上式中的i ξ和i λ称为零、极点。 在MATLAB 中,可以用函数[z ,p ,K]=tf2zp (num ,den )求得有理分式形式的系统转移函数的零、极点,用函数zplane (z ,p )绘出零、极点分布图;也可以用函数zplane (num ,den )直接绘出有理分式形式的系统转移函数的零、极点分布图。 另外,在MATLAB 中,可以用函数 [r ,p ,k]=residuez (num ,den )完成部分分式展开计算;可以用函数sos=zp2sos (z ,p ,K )完成将高阶系统分解为2阶系统的级联。

教你看懂音箱测频响曲线

教你看懂音箱测频响曲线

————————————————————————————————作者:————————————————————————————————日期:

前言: 声音信号是由不同频率的声波叠加而成的,因此人们在分析声音时就很难避开频率问题。发烧友们常说“有好曲线未必有好声”,但是更多的情况是“没有好曲线的产品声音肯定好不到哪里去”。那么曲线与最终的回放听感有什么联系呢?我们立刻进入正题,为大家揭示其中的奥秘。 声卡的频响曲线: 在声卡评测中,我们常用到回路测试法对声卡的输入输出回路进行音质测试,得出的曲线就是DAC到ADC的回路频响。 Frequency response(频率响应) [url=https://www.360docs.net/doc/e51895788.html,/images/html/viewpic_pconline.htm?http://img3.pconlin https://www.360docs.net/doc/e51895788.html,/pcon ... iy&subnamecode=home] [/url] General performance: Excellent Frequency range Response From 20 Hz to 20 kHz, dB -0.00, +0.01 From 40 Hz to 15 kHz, dB -0.00, +0.00 上图和上表就是频率响应曲线图和曲线品质,要知道什么是好曲线就应该知道理想的频响曲线是什么样的。理想的频率响应曲线应该是与输入信号完全一样的曲线,一般我们会用等响信号(各频段的声压相同)作为输入信号,因此理想的频响曲线就应该是尽可能平直平滑的曲线。

2016年《振动测试实验》综合练习题

2016年《振动测试实验》综合练习题 1、关于振动传感器,请回答以下问题: 1)振动传感器主要有哪些类型?哪种传感器目前使用最广泛? 答:根据被测振动运动是位移、速度还是加速度,可以将振动传感器分为位移传感器、速度传感器和加速度传感器三类;从力学原理上,振动传感器又可以分为绝对式传感器和相对式传感器两类;从电学原理上,根据所采用的将力学量转变为电学量的传感器敏感元件的性质,振动传感器又可分为电感型、电动型、涡流型、压电型和电阻型等诸多类型。其中使用最广泛的传感器是绝对式压电加速度传感器。 2)加速度传感器安装方式有哪些?对于飞机空中振动环境测试,你认为哪几种安装方式较合适? 答:加速度传感器安装方式有刚螺栓连接、胶合螺栓、石腊粘接、双面胶带和永久磁铁。对于飞机空中振动环境测试,胶合螺栓的安装方式较合适。 3)加速度传感器和力传感器的主要技术指标? 答:加速度传感器和力传感器的主要技术指标有灵敏度、频率响应特性、动态范围、横向灵敏度和幅值线性度。 4)一般振动数据采集设备最大输入电压为10伏。测量一结构加速度响应,加速度最大值预估约为20g,现有加速度传感器甲(灵敏度:50mv/g)、乙(灵敏度:500mv/g)各一只,选用哪一个传感器?请说明理由。 答:选用加速度传感器乙。因为数据采集设备的最大输入电压为10伏,加速度传感器甲的最大测量加速度为200g,离预估的加速度太大,而加速度传感器乙的最大测量加速度为20g,与预估的加速度符合。 2、关于激振器,请回答以下问题: 1)常用的激振器安装方式有哪两种?两种安装方式的分别有何技术要求? 答:常用的激振器安装方式有刚性支承和柔性悬挂两种。刚性支承安装要求垂直向、横向、纵向支承刚度足够大,即支承系统的最低阶固有频率要大于试验件最高阶固有频率。柔性悬挂安装要求垂直向、横向、纵向支承刚度足够小,即支承系统的最低阶固有频率要小于试验件最高阶固有频率。 2)用一台激振器做模态试验时,激振位置如何选择?

线性控制系统的频率响应分析

一.实验目的 1.了解和掌握对数幅频曲线和相频曲线(波德图)、幅相曲线(奈奎斯特图)的构造及绘制方法。 2.二阶开环系统中的相位裕度和幅值穿越频率的计算。 二.实验内容及要求 1.一阶惯性环节的频率特性曲线测试。 2.二阶开环系统的频率特性测试,研究表征系统稳定程度的相位裕度和 幅值穿越频率对系统的影响。 三、实验主要仪器设备和材料 1.labACT自控/计控原理实验机一台 2.数字存储示波器一台 四、实验方法、步骤及结果测试 1.一阶惯性环节的频率特性曲线 惯性环节的频率特性测试模拟电路见图4-1。 图4-1 惯性环节的频率特性测试模拟电路 实验步骤:注:‘S ST'不能用“短路套”短接! (1)将数/模转换器(B2)输出OUT2作为被测系统的输入。 (2)按图4-1安置短路套及测孔联线。 (3)运行、观察、记录: ①运行LABACT程序,选择自动控制菜单下的线性控制系统的频率响应分析-实验项目,选择一阶系统,再选择开始实验,点击开始,实验机将自动产生0.5Hz~64Hz多个频率信号,测试被测系统的频率特性,等待将近十分钟,测试结束。 ②测试结束后,可点击界面下方的“频率特性”选择框中的任意一项进行切换,将显示被测系统的对数幅频、相频特性曲线(伯德图)和幅相曲线(奈 奎斯特图),同时在界面上方将显示点取的频率点的L、、Im、Re等相关数

据。如点击停止,将停止示波器运行,不能再测量数据。 ③分别改变惯性环节开环增益与时间常数,观察被测系统的开环对数幅频曲线、相频曲线及幅相曲线,在幅频曲线或相频曲线上点取相同的频率点,测量、记录数据于实验数据表中。 实验数据表1:改变惯性环节开环增益,(T=0.05,C=1u,R2=50K) 实验数据表2: 改变惯性环节时间常数, K=1(R1=50K、R2=50K) 2.二阶开环系统的频率特性曲线 二阶系统模拟电路图的构成如图4-2所示。

相关文档
最新文档