电磁感应与电磁场的变化知识点总结

电磁感应与电磁场的变化知识点总结电磁感应是指在磁场的作用下,导体内产生电流现象的过程。电磁感应是电磁场的一种变化形式,了解电磁感应和与之相关的电磁场变化知识是理解电磁现象的重要基础。本文将对电磁感应与电磁场变化的相关知识进行总结。

1. 法拉第电磁感应定律

法拉第电磁感应定律是描述电磁感应现象的基本规律。根据该定律,当导体被磁场穿过并发生变化时,导体两端将产生感应电动势,从而产生电流。法拉第电磁感应定律可以用公式表示为:Ε = -dΦ/dt,其中Ε表示感应电动势,Φ表示磁通量,t表示时间。

2. 洛伦兹力与电磁感应的关系

洛伦兹力是运动电荷在磁场中受到的力,与电磁感应有着密切的关系。当电导体中的电子受到洛伦兹力作用时,电子将发生运动,导致电流的产生。这种现象称为洛伦兹力的电磁感应。洛伦兹力可以用公式表示为:F = qvB,其中F表示洛伦兹力,q表示电荷量,v表示电子运动速度,B表示磁感应强度。

3. 电磁感应的应用

电磁感应的应用十分广泛,其中最重要的应用之一是发电机的原理。发电机通过旋转导体和磁场之间的相互作用来产生电动势,从而转化为电能。电磁感应也被用于变压器、感应加热等电器设备中。

4. 电磁场的变化

电磁感应是电磁场的一种变化形式。电磁场是指由电荷和电流产

生的物理场。当电流通过导线或线圈时,将形成一个磁场,这个磁场

的强弱与电流大小相关。而当磁场与导体相互作用时,又会产生感应

电动势和感应电流,形成电磁感应。

5. 磁感应强度的变化

磁感应强度是描述磁场强弱的物理量。磁感应强度的变化对电磁

感应产生重要影响。当导体中的电流变化或磁场的磁感应强度变化时,感应电动势的大小也会发生相应的变化。

总结起来,电磁感应与电磁场的变化密不可分。电磁感应是指在磁

场作用下,导体内产生电流的现象,而电磁场的变化产生了电磁感应。了解电磁感应与电磁场的变化规律对于理解电磁现象以及应用电磁技

术具有重要意义。通过深入研究电磁感应与电磁场变化的知识,我们

可以更好地理解和应用电磁学原理。

三分钟带你了解电磁感应、电磁场与电磁波

三分钟带你了解电磁感应、电磁场与电磁波 我们通过观察可以发现,在一个固定的正电荷的附近放一个负电荷,则负电荷会被正电荷吸引。同样的,正电荷也会被固定的负电荷吸引。此时我们说正电荷或负电荷周围有电场,电场就会让置于其中的电荷产生某个方向上的力。通过观察又可以发现,在一个变化的磁场中导线会产生电流。电流的本质也是电荷的移动,所以我们也可以说变化的磁场激发了一个电场,这是电磁感应中的磁生电。 同样是通过观察发现,在一个固定的N极磁体附近放一个P极磁体,则P极会被N极吸引。同样的,N极也会被固定的P极吸引。此时我们说N极或P极周围有磁场,磁场会让置于其中的磁体产生某个方向上的力。通过观察又可以发现,在一个不断变化电流方向的导线周围放置一个磁体,此磁体也会被施加某个方向的力,而不断变化电流方向的导线可以描述为导线处于不断变换的电场中。所以我们说变化的电场激发了一个磁场,这是电磁感应中的电生磁。

通过前面两段的拗口描述,我们得出一个结论: 变化的电场激发磁场,变化的磁场激发电场。也即是将电磁感应这个物理现象总结为统一的电磁场理论。 由于这种互激发的特性,电场与磁场可以传导至很远的距离,我们将这种传导现象称为电磁波(但是刚才又想到,电场传导过程并没有产生电流,没有电流又是如何感生磁场的呢?)。 研究发现,电磁波频率越高则其波长越短,则传导距离越近。电磁波频率越低则其波长越长,则传导距离越远。所以需要远距离传播,如无线电台中的FM调频(传播到整个城市)一般在100MHz左右,而仅用作近距离传播的手机3G信号(仅几公里),如CDMA就在2000MHz左右。但是,由于频率低无线电台能承载的信号密度就低,3G信号由于频率较高所以能承载的信号密度就高。这也就导致了我们从2G信号升级为3G信号乃至未来的5G信号,运营商的基站密度需要不断的增加(信号传输距离变短)。

电磁感应知识点总结

电磁感应知识点总结 电磁感应是电磁学中非常重要的一个概念,它描述了导体中的电流 和磁场之间的相互作用。电磁感应的理论基础是法拉第电磁感应定律,通过这个定律我们可以了解电磁感应产生的原理和特点。本文将对电 磁感应的相关知识点进行总结和归纳。 1. 法拉第电磁感应定律 法拉第电磁感应定律是描述电磁感应现象的基础定律,由英国物理 学家迈克尔·法拉第于1831年提出。该定律的主要表述是:当导体中的磁通量发生变化时,沿着导体的电路中就会产生感应电动势。感应电 动势的大小与磁通量变化的速率成正比。 2. 磁通量 磁通量是衡量磁场穿过某一表面的量度。用Φ表示,单位是韦伯(Wb)。磁通量的大小与磁场强度和所穿过的表面积成正比。 3. 感应电动势和感应电流 当导体中的磁通量发生变化时,根据法拉第电磁感应定律,就会在 导体中产生感应电动势。如果导体是闭合回路,那么感应电动势将驱 动电荷在导体中产生电流,这就是所谓的感应电流。 4. 感应电动势的计算

根据法拉第电磁感应定律,感应电动势的大小等于磁通量变化率的 负值乘以导体的匝数。数学表达式可以写作ε = -dΦ/dt,其中ε表示感 应电动势,dΦ/dt表示磁通量的变化率。 5. 湘妃之旅匝数和楔 匝数是描述导体中线圈的特征之一,表示线圈中的导线环绕磁场的 圈数。匝数越大,感应电动势就越大。 6. 涡流 当导体中的磁通量发生变化时,产生的感应电流称为涡流。涡流会 在导体内部形成环状的电流路径,由于涡流的存在,导体内部会产生 热量,这也是涡流的一个重要特点。 7. 动生电动势和感应电动势的方向 根据法拉第电磁感应定律,感应电动势的方向由磁通量的变化率确定。当磁通量增加时,感应电动势的方向与产生磁场时电流方向一致;当磁通量减小时,感应电动势的方向与磁场的方向相反。 8. 电磁感应的应用 电磁感应在生活中有许多重要的应用。最常见的一个例子是发电机 的工作原理,利用电磁感应原理将机械能转化为电能。电磁感应也应 用于变压器、感应炉、磁悬浮列车等领域。 总结:

电磁感应与电磁场的知识点总结

电磁感应与电磁场的知识点总结电磁感应是电磁学中的一个重要概念,指的是导体中的电流会受到 磁场的影响而产生感应电动势。而电磁场则是由电荷和电流所产生的 物理现象,可以用来描述电磁力的作用。本文将对电磁感应与电磁场 的相关知识点进行总结,帮助读者更好地理解这一领域。 一、电磁感应 1. 法拉第电磁感应定律 法拉第电磁感应定律是电磁感应研究的基础,它表明当导体中的磁 场发生变化时,会产生感应电动势。具体表达式为:感应电动势等于 磁通量变化率的负值乘以线圈的匝数。这个定律解释了电磁感应现象 的产生原理。 2. 楞次定律 楞次定律是法拉第电磁感应定律的补充,它描述了感应电流的方向。根据楞次定律,感应电流的产生会产生磁场,其磁场的方向使得感应 电流所产生的磁场与引发感应电流变化的磁场方向相反。换言之,楞 次定律说明了感应电流的方向与磁场变化的关系。 3. 磁通量与磁感应强度 磁通量描述的是磁场通过某一平面的程度,与磁场的面积和磁感应 强度有关。磁感应强度表示单位面积上的磁通量,它的方向垂直于磁 场线。通过改变磁通量和磁感应强度,可以实现对电磁感应的控制。

二、电磁场 1. 静电场与静电力 静电场是由电荷所产生的一种场,它可以通过电场线来表示。静电 力是静电场作用在电荷上的力,根据库仑定律,静电力与电荷之间的 距离和大小成反比。 2. 磁场与磁力 磁场是由电流所产生的一种场,它可以通过磁感线来表示。磁力是 磁场对电荷和电流所产生的力,它的方向垂直于磁场线和电荷或电流 的方向。 3. 电磁场和电磁力 电磁场是由电荷和电流共同产生的场,它是电场和磁场的综合体现。电磁力是电场和磁场对电荷和电流所产生的综合力,它同时包含了静 电力和磁力的作用。 4. 麦克斯韦方程组 麦克斯韦方程组是描述电磁场性质的基本方程,它由四个方程组成。其中包括了法拉第电磁感应定律、库仑定律以及电磁场的高斯定律和 安培环路定律。麦克斯韦方程组的推导和理解有助于深入学习电磁场 的原理和性质。 总结:

(完整版)高二物理电场磁场总结(超全)

电磁场总结 知识要点: 1.电荷 电荷守恒定律 点电荷 ⑴自然界中只存在正、负两中电荷,电荷在它的同围空间形成电场,电荷间的相互作用力就是通过电场发生的。电荷的多少叫电量。 基本电荷e =?-161019.C 。带电体电荷量等于元电荷的整数倍(Q=ne ) ⑵使物体带电也叫起电。使物体带电的方法有三种:①摩擦起电 ②接触带电 ③感应起电。 ⑶电荷既不能创造,也不能被消灭,它只能从一个物体转移到另一个物体,或从的体的这一部分转移到另一个部分,这叫做电荷守恒定律。 带电体的形状、大小及电荷分布状况对它们之间相互作用力的影响可以忽略不计时,这样的带电体就可以看做带电的点,叫做点电荷。 2.库仑定律 (1)公式 F K Q Q r =122 (真空中静止的两个点电荷) 在真空中两个点电荷间的作用力跟它们的电量的乘积成正比,跟它们间的距离的平方成反比,作用力的方向在它们的连线上,数学表

达式为F K Q Q r =122,其中比例常数K 叫静电力常量,K =?90109.N m C 22·。(F:点电荷间的作用力(N), Q 1、Q 2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引) (2)库仑定律的适用条件是(1)真空,(2)点电荷。点电荷是物理中的理想模型。当带电体间的距离远远大于带电体的线度时,可以使用库仑定律,否则不能使用。 3.静电场 电场线 为了直观形象地描述电场中各点的强弱及方向,在电场中画出一系列曲线,曲线上各点的切线方向表示该点的场强方向,曲线的疏密表示电场的弱度。 电场线的特点:(1)始于正电荷 (或无穷远),终止负电荷(或无穷远);(2)任意两条电场线都不相交。 电场线只能描述电场的方向及定性地描述电场的强弱,并不是带电粒子在电场中的运动轨迹。带电粒子的运动轨迹是由带电粒子受到的合外力情况和初速度共同决定。 4.电场强度 点电荷的电场 ⑴电场的最基本的性质之一,是对放入其中的电荷有电场力的作用。电场的这种性质用电场强度来描述。在电场中放入一个检验电荷q ,它所受到的电场力F 跟它所带电量的比值F q 叫做这个位置上的电场强度,定义式是q F E =,E 是矢量,规定正电荷受电场力的方向为该点的场强方向,负电荷受电场力的方向与该点的场强方向相反。(E:电场强度(N/C),是矢量,q :检验电荷的电量(C)) 电场强度E 的大小,方向是由电场本身决定的,是客观存在的,与检验电荷无关。与放入检验电荷的正、负,及带电量的多少均无关,不能认为E 与F 成正比,也不能认为E 与q 成反比。

电磁知识点整理

一、磁场: (1) 磁体周围存在磁场,磁体间的相互作用是通过磁场产生的。 (2) 基本性质:磁场对放入其中的磁体有力的作用。 (3) 磁场是有方向的,在磁场中某一点,小磁针静止时北极所指的方向就是该电磁场的方向。 (4) 磁感线:是假想的,闭合的、有方向的曲线,不是真实存在的。 二、电流的磁场: (5) 奥斯体实验证明:电流周围存在磁场(丙)。这个现象又叫做电流的磁效应。 (6) 奥斯特是第一个发现电与磁联系的人。 (7) 通电螺线管的磁场:通电螺线管外部磁场相当于一个条形磁铁的磁场,磁极性质与电磁铁 螺线管的电流方向有关,可用右手螺旋定则判定。磁性强弱与电流大小,线圈匝数,有无铁心有关。 (8) 电磁铁:带有铁心螺线管。特点:电磁铁的磁性有无、大小、磁极可以控制。 三、电磁感应(乙) (1)法拉第发现电磁感应现象 (2)电磁感应现象:闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中就产生电流。 (3)产生感应电流的条件:闭合回路,切割磁感线 (4)发电机:原理:电磁感应。 将机械能转化为电能 四、磁场对电流的作用(甲、丁) (1)通电导体在磁场中受到力的作用 (2)电动机原理:通电线圈在磁场中受力转动(或磁场对通电导体有力的作用) 将电能转化为机械能 甲丁:甲、丁是研究电动机工作原理的实验:即:通电导体在磁场中受到力的作用。 乙:乙是研究发电机工作原理的实验:即:电磁感应 丙:奥斯特实验,证明电流(或通电导体)周围存在磁场。 磁场 (9) 磁体周围存在磁场,磁体间的相互作用是通过( )磁场产生的。 (10) 基本性质:( ) (11) 磁场是有方向的,在磁场中某一点,小磁针静止时( )所指方向就是该电磁场的方向。 (12) 磁感线:是( )不是真实存在的。 二、电流的磁场: (13) 奥斯体实验证明:( ) 这个现象又叫做电流的( )。 (14) 通电螺线管的磁场:通电螺线管外部磁场相当于一个( )的磁场,磁极性质与 电磁铁螺线管的( )有关,可用( )判定。磁性强弱与( ) (15) 电磁铁:带有铁心螺线管。特点:( ) 三、电磁感应 (1)( )发现电磁感应现象 (2)电磁感应现象:闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中就产生电流。 (3)产生感应电流的条件:( ) (4)发电机:原理:( ) 能量转换( ) 四、磁场对电流的作用 (1)通电导体在磁场中受到力的作用 (2)电动机原理:原理:( ) 能量转换( ) 如图9是关于电磁现象实验的示意图,下列说法正确的是 [10朝一]3.如图9是关于电磁现象实验的示意图,下列说法正确的是 A .甲是研究发电机工作原理的实验 B .乙是探究电磁感应现象的实验 C .丙中的实验说明通电导体周围存在磁场 D .丁是探究电磁铁磁性强弱的实验 甲 乙 丙 丁 电源 I 甲 乙 丙 丁 电源 I

物理电磁感应知识点总结

物理电磁感应知识点总结 电磁感应(Electromagnetic induction)现象是指放在变化磁通量中的导体,会产生电动势。下面是店铺为你整理的物理电磁感应知识点,一起来看看吧。 物理电磁感应知识点 1.电流的磁效应: 把一根导线平行地放在磁场上方,给导线通电时,磁针发生了偏转,就好像磁针受到磁铁的作用一样。这说明不仅磁铁能产生磁场,电流也能产生磁场,这个现象称为电流的磁效应。 2.电流磁效应现象: 磁铁对通电导线的作用,磁铁会对通电导线产生力的作用,使导体棒偏转。电流和电流间的相互作用,有相互平行而且距离较近的两条导线,当导线中分别通以方向相同和方向相反的电流时,观察到发生的现象是:同向电流相吸,异向电流相斥。 3.电磁感应发现的意义: ①电磁感应的发现使人们对电与磁内在联系的认识更加完善,宣告了电磁学作为一门统一学科的诞生。 ②电磁感应的发现使人们找到了磁生电的条件,开辟了人类的电器化时代。 ③电磁感应现象的发现,推动了经济和社会的发展,也体现了自然规律的和谐的对称美。 4.对电磁感应的理解: 电和磁之间有着必然的联系,电能生磁,磁也一定能够生电,但磁生电是有条件的,只有变化的磁场或相对位置的变化才能产生感应电流,磁生电表现为磁场的“变化”和“运动”。 引起电流的原因概括为五类: ① 变化的电流。 ② 变化的磁场。 ③ 运动的恒定电流。

④ 运动的磁场。 ⑤ 在磁场中运动的导体。 5.磁通量: 闭合电路的面积与垂直穿过它的磁感应强度的乘积叫磁通量,即Φ,θ为磁感线与线圈平面的夹角。 6.对磁通量Φ的说明: 虽然闭合电路的面积与垂直穿过它的磁感应强度的乘积叫磁通量,但是当磁场与闭合电路的面积不垂直时,磁感应强度也有垂直闭合电路的分量磁感应强度垂直闭合电路面积的分量。 7.产生感应电流的条件: 一是电路闭合。 二是磁通量变化。 8.楞次定律: 感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。 9.楞次定律的理解: ① 感应电流的磁场不一定与原磁场方向相反,只是在原磁场的磁通量增大时两者才相反;在磁通量减小时,两者是同样。 ② “阻碍”并不是“阻止”如原磁通量要增加,感应电流的磁场只能“阻碍”其增加,而不能阻止其增加,即原磁通量还是要增加。 ③定律本身并没有直接给定感应电流的方向,只是给定感应电流的磁场与原磁场间存在“阻碍”关系,要注意区分这两个磁场及其间的相互关系。 10.感应电动势: 在电磁感应现象中产生的电动势叫做感应电动势,产生感应电动势的那部分导体就相当于电源。 11.反电动势: 定义:电动机转动时,线圈中也会产生感应电动势,这个电动势总要削弱电源电动势的作用,我们把这个电动势称为反电动势。 12.电磁感应规律的应用:

高中电磁学知识点整理

高中电磁学知识点整理 电磁学是物理学中的一门重要学科,它研究的是电荷和电流所产生的电场和磁场的性质以及它们之间的相互作用。在高中物理学中,电磁学也是一个重要的知识点,下面将对高中电磁学的一些重要内容进行整理。 1. 电场和电势 电场是指电荷周围空间中的物理量,它代表了电荷对周围空间的影响。电势是指单位正电荷在电场中所具有的势能,它是描述电场强度的一种物理量。电场和电势是电学中的基本概念,掌握它们对理解电学的其他知识点具有重要意义。 2. 磁场和磁感线 磁场是由电荷或运动电荷所产生的物理量,它代表了磁性物质在磁场中所受到的力的大小和方向。磁感线是描述磁场的一种图像,它代表了磁场的强度和方向。掌握磁场和磁感线的概念对于理解电磁学的其他知识点也非常重要。 3. 安培环路定理 安培环路定理是电学中的一个重要定理,它描述了电流在磁场中所受到的力的大小和方向。根据安培环路定理可以推导出电磁感应定

律,它是电磁学中的另一个重要定理。 4. 法拉第电磁感应定律 法拉第电磁感应定律是电磁学中的一个基本定律,它描述了磁场变化时电场的产生。根据法拉第电磁感应定律可以推导出电磁波的产生,电磁波是一种具有电场和磁场的波动现象,是电磁学中的另一个重要知识点。 5. 磁场的感应 磁场的感应是指磁性物质在外加磁场作用下所产生的磁化现象。磁场的感应是电磁学中的一个重要概念,它涉及到磁性物质的性质和磁场的作用。 6. 磁场对电荷的影响 磁场对电荷的影响是电磁学中的一个重要现象,它描述了电荷在磁场中所受到的力的大小和方向。磁场对电荷的影响是电磁学中的一个基本现象,它涉及到电荷和磁场之间的相互作用。 7. 电磁波的特性 电磁波是电磁学中的一个重要知识点,它具有许多特性,如波长、频率、速度等。电磁波在现代通讯和科技领域中有着广泛的应用,掌握电磁波的特性对于理解现代技术有着重要意义。

电磁感应、电磁场电磁波的知识点总结

高二物理电磁感应、电磁场电磁波的知识点总结 2012.6 一、产生感应电流的条件: 1.磁通量发生变化(产生感应电动势的条件) 2.闭合回路 *引起磁通量变化的常见情况: (1)线圈中磁感应强度发生变化 (2)线圈在磁场中面积发生变化(如:闭合回路中的部分导体做切割磁感线运动) (3)线圈在磁场中转动 二、感应电流的方向判定: 1.楞次定律:(适用磁通量发生变化) 感应电流的磁场总是阻碍引起感应电流的磁通量的变化。 关于“阻碍”的理解: (1)“阻碍”是“阻碍原磁通量的变化”,而不是阻碍原磁场;(2)“阻碍”不是“阻止”,尽管“阻碍原磁通量的变化”,但闭合回路中的磁通量仍然在变化; (3)“阻碍”是“阻碍变化”,当原磁通量增加时,感应电流的磁场方向与原磁场方向相反——阻碍原磁通量的增加;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同——阻碍原磁通量的减少。

2.右手定则:(适用导体切割磁感应线) 伸开右手,让拇指跟其余四指垂直,并且都跟手掌在一个平面内, 让磁感线垂直从手心进入,拇指指向导体运动的方向,其余四指指的就是感应电流的方向。其中四指指向还可以理解为:感应电动势高电势处。 *应用楞次定律判断感应电流方向的具体步骤 ①明确闭合回路中原磁场方向(穿过线圈中原磁场的磁感线的方向)。 ②把握闭合回路中原磁通量的变化(φ原是增加还是减少)。 ③依据楞次定律,确定回路中感应电流磁场的方向(B感取什么方向才能阻碍φ原的变化)。 ④利用安培定则,确定感应电流的方向(B感和I感之间的关系)。*楞次定律的拓展 1.当闭合回路中磁通量变化而引起感应电流时,感应电流的效果总是阻碍原磁通量的变化。(增反减同) 2.当线圈和磁场发生相对运动而引起感应电流时,感应电流的效果总是阻碍二者之间的相对运动(来斥去吸)。 3.当线圈中自身电流发生变化而引起感应电流时,感应电流的效果总是阻碍原电流的变化(自感现象)。 三、感应电动势的大小: 1. 法拉第电磁感应定律:在电磁感应现象中,电路中感应电 动势的大小,跟穿过这一电路的磁通量的变化率成正比。

高中物理电磁感应知识点总结

高中物理电磁感应知识点总结 电磁感应现象 因磁通量变化而产生感应电动势的现象我们诚挚为电磁感应现象。具体来说,闭合电路的一部分导体,做切割磁感线的运动时,就会产生电流,我们把这种现象叫电磁感应,导体中所产生的电流称为感应电流。 法拉第电磁感应定律概念 基于电磁感应现象,大家开始探究感应电动势大小到底怎么计算?法拉第对此进行了总结并得到了结论。感应电动势的大小由法拉第电磁感应定律确定,电路中感应电动势的大小,跟穿过这一电路的磁通变化率成正比。公式:e=-n(dΦ)/(dt)。对动生的情况,还可用e=blv 来求。 电动势的方向可以通过楞次定律来判定。高中物理wuli.in楞次定律指出:感应电流的磁场要阻碍原磁通的变化。对于动生电动势,同学们也可用右手定则判断感应电流的方向,也就找出了感应电动势的方向。需要注意的是,楞次定律的应用更广,其核心在”阻碍”二字上。 感应电动势的大小计算公式 (1)e=n*ΔΦ/Δt(普适公式){法拉第电磁感应定律,e:感应电动势(v),n:感应线圈匝数,ΔΦ,Δt磁通量的变化率} (2)e=blvsina(切割磁感线运动)e=blv中的v和l不可以和磁感线平行,但可以不和磁感线垂直,其中sina为v或l与磁感线的夹角。{l:有效长度(m)} (3)em=nbsω(交流发电机最大的感应电动势){em:感应电动势峰值} (4)e=b(l^2)ω/2(导体一端固定以ω旋转切割)其中ω:角速度(rad/s),v:速度(m/s) 电磁感应现象是电磁学中最重大的发现之一,它显示了电、磁现象之间的相互联系和转化,对其本质的深入研究所揭示的电、磁场之

间的联系,对麦克斯韦电磁场理论的建立具有重大意义。电磁感应现象在电工技术、电技术以及电磁测量等方面都有广泛的应用。 电磁感应与静电感应的关系 电磁感应现象不应与静电感应混淆。电磁感应将电动势与通过电路的磁通量联系起来,而静电感应则是使用另一带电荷的物体使物体产生电荷的方法。

高中物理电磁学知识点

二、电磁学 (一)电场 1、库仑力:221r q q k F = (适用条件:真空中点电荷) k = 9.0×109 N ·m 2/ c 2 静电力恒量 电场力:F = E q (F 与电场强度的方向可以相同,也可以相反) 2、电场强度: 电场强度是表示电场强弱的物理量。 定义式: q F E = 单位: N / C 点电荷电场场强 r Q k E = 匀强电场场强 d U E = 3、电势,电势能: q E A 电 =ϕ,A q E ϕ=电 顺着电场线方向,电势越来越低。 4、电势差U ,又称电压 q W U = U AB = φA -φB 5、电场力做功和电势差的关系: W AB = q U AB 6、粒子通过加速电场: 22 1mv qU = 7、粒子通过偏转电场的偏转量:

20 2 2022212121V L md qU V L m qE at y === 粒子通过偏转电场的偏转角 20 mdv qUL v v tg x y ==θ 8、电容器的电容: c Q U = 电容器的带电量: Q=cU 平行板电容器的电容: kd S c πε4= 电压不变 电量不变 (二)直流电路 1、电流强度的定义:I = 微观式:I=nevs (n 是单位体积电子个数,) 2、电阻定律: 电阻率ρ:只与导体材料性质和温度有关,与导体横截面积和长度无关。 单位:Ω·m 3、串联电路总电阻: R=R 1+R 2+R 3 电压分配 2121R R U U =,U R R R U 2 111+= 功率分配 2121R R P P =,P R R R P 2 111+= 4、并联电路总电阻: 3 211111R R R R ++= (并联的总电阻比任何一个分电阻小) 两个电阻并联 2 121R R R R R += 并联电路电流分配 1221I R I R =,I 1=I R R R 2 12+ S l R ρ =

高中物理电磁场知识点

高中物理电磁场和电磁波知识点总结 1.麦克斯韦的电磁场理论 (1)变化的磁场能够在周围空间产生电场,变化的电场能够在周围空间产生磁场. (2)随时间均匀变化的磁场产生稳定电场.随时间不均匀变化的磁场产生变化的电场.随时间均匀变化的电场产生稳定磁场,随时间不均匀变化的电场产生变化的磁场. (3)变化的电场和变化的磁场总是相互关系着,形成一个不可分割的统一体,这就是电磁场. 2.电磁波 (1)周期性变化的电场和磁场总是互相转化,互相激励,交替产生,由发生区域向周围空间传播,形成电磁波. (2)电磁波是横波(3)电磁波可以在真空中传播,电磁波从一种介质进入另一介质,频率不变、波速和波长均发生变化,电磁波传播速度v等于波长λ和频率f的乘积,即v=λf,任何频率的电磁波在真空中的传播速度都等于真空中的光速c=3.00×10 8 m/s. 下面为大家介绍的是2012年高考物理知识点总结电磁感应,希望对大家会有所帮助。 1. 电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流. (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即ΔΦ≠0.(2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势.产生感应电动势的那部分导体相当于电源. (2)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流. 2.磁通量(1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义 式:Φ=BS.如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S′,即Φ=BS′,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数.任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正.反之,磁通量为负.所求磁通量为正、反两面穿入的磁感线的代数和. 3. 楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化.楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便. (2)对楞次定律的理解 ①谁阻碍谁———感应电流的磁通量阻碍产生感应电流的磁通量. ②阻碍什么———阻碍的是穿过回路的磁通量的变化,而不是磁通量本身.③如何阻碍———原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”.④阻碍的结果———阻碍并不是阻止,结果是增加的还增加,减少的还减少. (3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍原电流的变化(自感). 4.法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.表达式E=nΔΦ/Δt 当导体做切割磁感线运动时,其感应电动势的计算公式为E=BLvsinθ.当B、L、v三者两两垂直时,感应电动势E=BLv.(1)两个公式的选用方法E=nΔΦ/Δt 计算的是在Δt时间内的平均电动势,只有当磁通量的变化率是恒定不变时,它算出的才是瞬时电动势.E=BLvsinθ中的v若为瞬时速度,则算出的就是瞬时电动势:若v为平均速度,算出的就是平均电动势.(2)公式的变形 ①当线圈垂直磁场方向放置,线圈的面积S保持不变,只是磁场的磁感强度均匀变化时,感应电动势:E=nSΔB/Δt . ②如果磁感强度不变,而线圈面积均匀变化时,感应电动势E=Nbδs/Δt . 5.自感现象

电磁感应知识点总结

电磁感应知识点总结 1、电磁感应的概念 电磁感应是物理学中的一个重要概念,是指电磁场的变化引起了电场的变化,或者反过来,电场的变化引起了磁场的变化。这个概念在电力、电子、通信等领域都有广泛的应用。 2、法拉第电磁感应定律 法拉第电磁感应定律是电磁感应的核心,它指出,当一个闭合导线的磁场发生变化时,就会在导线中产生感应电流。这个定律可以用公式E=n(ΔΦ)/(Δt)来表示,其中 E是感应电动势,n是线圈的匝数,ΔΦ是磁场的变化量,Δt是时间的变化量。 3、楞次定律 楞次定律是判断感应电流方向的一个重要定律,它指出,感应电流的方向总是要阻止产生它的磁场变化。也就是说,如果磁场在增加,感应电流的方向会与这个增加的方向相反;如果磁场在减少,感应电流的方向会与这个减少的方向相同。 4、麦克斯韦方程组

麦克斯韦方程组是描述电磁场的方程组,其中包括了描述电场、磁场和它们之间关系的方程。这个方程组揭示了电磁波的存在,并且预测了光其实就是一种电磁波。 5、电磁感应的应用 电磁感应在电力、电子、通信等领域都有广泛的应用。例如,发电机是利用电磁感应原理将机械能转化为电能;变压器是利用电磁感应原理将电压进行变换;无线电设备则是利用电磁感应原理将电信号转换为无线电波进行传输。 电磁感应是物理学中的一个重要概念,对于理解电力、电子、通信等领域的工作原理有着重要的作用。电磁感应的应用也十分广泛,对于现代社会的发展起着关键的作用。 高中物理电磁感应知识点总结 一、电磁感应现象: 电磁感应现象是指放在变化磁场中的导体,会产生电动势;或者闭合电路的一部分导体在磁场中做切割磁感线的运动时,导体中就会产生电流的现象;以及一块金属放在绕着自己的赤道运动的磁铁的磁场内,绕着磁铁的运动方向产生一个相反的电动势。

高考物理电磁感应及电磁场(波)知识点总结

高考物理电磁感应及电磁场(波)知 识点总结_ 高中物理电磁场和电磁波知识点总结。你要清楚地知道你到底是谁,要去哪里。要成为一个什么样的人,很多人浑浑噩噩,得过且过。你能清楚地意识到,或者梦想去到达彼岸,有时候,人生境遇就是如此,轻而易举滴到达你的彼岸。下面是为同学们精心整理的高考物理知识点总结 1.麦克斯韦的电磁场理论 (1)变化的磁场能够在周围空间产生电场,变化的电场能够在周围空间产生磁场. (2)随时间均匀变化的磁场产生稳定电场.随时间不均匀变化的磁场产生变化的电场.随时间均匀变化的电场产生稳定磁场,随时间不均匀变化的电场产生变化的磁场. (3)变化的电场和变化的磁场总是相互关系着,形成一个不可分割的统一体,这就是电磁场.

2.电磁波 (1)周期性变化的电场和磁场总是互相转化,互相激励,交替产生,由发生区域向周围空间传播,形成电磁波. (2)电磁波是横波(3)电磁波可以在真空中传播,电磁波从一种介质进入另一介质,频率不变、波速和波长均发生变化,电磁波传播速度v等于波长和频率f 的乘积,即v=f,任何频率的电磁波在真空中的传播速度都等于真空中的光速c=3.0010 8 m/s. 下面为大家介绍的是2021年高考物理知识点总结电磁感应,希望对大家会有所帮助。 1. 电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流. (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即0.(2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势.产生感应电动势的那部分导体相当于电源. (2)电磁感应现象的实质是产生感应电动势,如果回路闭合,

电磁感应知识点总结

电磁感应知识点总结 电磁感应是指导体中的电流或电荷在外加磁场的作用下产生感应电动势的现象。电磁感应是电磁学中的重要内容,也是电磁学与电动力学的基础知识之一。下面我们将对电磁感应的相关知识点进行总结。 1. 法拉第电磁感应定律。 法拉第电磁感应定律是电磁感应的基本规律之一,它描述了磁场变化引起感应 电动势的现象。定律表述为,当导体回路中的磁通量发生变化时,回路中就会产生感应电动势。这一定律为电磁感应现象提供了定量的描述,为电磁感应现象的应用提供了基础。 2. 感应电动势的方向。 根据法拉第电磁感应定律,我们可以得出感应电动势的方向规律。当磁通量增 加时,感应电动势的方向使得产生的感应电流产生磁场的方向与原磁场方向相同;当磁通量减小时,感应电动势的方向使得产生的感应电流产生磁场的方向与原磁场方向相反。这一规律在电磁感应现象的分析和应用中具有重要的指导意义。 3. 感应电动势的大小。 感应电动势的大小与磁通量的变化率成正比,即。 ε = -dΦ/dt。 其中,ε表示感应电动势的大小,Φ表示磁通量,t表示时间。这一关系式说 明了磁通量的变化越快,感应电动势的大小就越大。这一规律在电磁感应现象的定量分析中起着重要的作用。 4. 涡旋电场。

当磁场发生变化时,会在空间中产生涡旋电场。这一现象是电磁感应的重要特征之一,也是电磁学中的重要内容。涡旋电场的产生使得电磁感应现象更加复杂和丰富,为电磁学的研究提供了新的视角。 5. 涡旋电流。 涡旋电场的存在导致了涡旋电流的产生。涡旋电流是一种特殊的感应电流,它的存在对电磁场的分布和能量传递产生了重要影响。涡旋电流的研究不仅有助于理解电磁感应现象的本质,也为电磁学的应用提供了新的思路。 通过以上对电磁感应知识点的总结,我们对电磁感应现象有了更深入的理解。电磁感应作为电磁学的重要内容,不仅在理论研究中具有重要意义,也在实际应用中发挥着重要作用。希望我们能够深入学习和理解电磁感应的知识,为电磁学的发展和应用做出贡献。

高中物理电磁学知识点

二 、电磁学 (一)电场 1、库仑力:22 1r q q k F = (适用条件:真空中点电荷) k = 9.0×109 N ·m 2/ c 2 静电力恒量 电场力:F = E q (F 与电场强度的方向可以相同,也可以相反) 2、电场强度: 电场强度是表示电场强弱的物理量。 定义式: q F E = 单位: N / C 点电荷电场场强 r Q k E = 匀强电场场强 d U E = 3、电势,电势能: q E A 电=ϕ,A q E ϕ=电 顺着电场线方向,电势越来越低。 4、电势差U ,又称电压 q W U = U AB = φA -φB 5、电场力做功和电势差的关系: W AB = q U AB 6、粒子通过加速电场: 7、粒子通过偏转电场的偏转量: 粒子通过偏转电场的偏转角 8、电容器的电容: c Q U = 电容器的带电量: Q=cU 平行板电容器的电容: kd S c πε4= 电压不变 电量不变 (二)直流电路 1、电流强度的定义:I = 微观式:I=nevs (n 是单位体积电子个数,) 2、电阻定律:

电阻率ρ:只与导体材料性质和温度有关,与导体横截面积和长度无关。 单位:Ω·m 3、串联电路总电阻: R=R 1+R 2+R 3 电压分配 2 12 1R R U U =,U R R R U 2 11 1+= 功率分配 2 12 1R R P P =,P R R R P 2 11 1+= 4、并联电路总电阻: 3 2 1 1111R R R R ++= (并联的总电阻比任何一个分电阻小) 两个电阻并联 2 121R R R R R += 并联电路电流分配 122 1 I R I R =,I 1=I R R R 2 12 + 并联电路功率分配 122 1R R P P =,P R R R P 2 12 1+= 5、欧姆定律:(1)部分电路欧姆定律: 变形:U=IR (2)闭合电路欧姆定律:I = r R E + Ir U E += E r 路端电压:U = E -I r= IR 输出功率: = IE-I r = (R = r 输出功率最大) R 电源热功率: 电源效率: =E U = R R+r 6、电功和电功率: 电功:W=IUt 焦耳定律(电热)Q= 电功率 P=IU 纯电阻电路:W=IUt= P=IU 非纯电阻电路:W=IUt ? P=IU ? (三)磁场 1、磁场的强弱用磁感应强度B 来表示: Il F B = (条件:B ⊥L )单位:T 2、电流周围的磁场的磁感应强度的方向由安培(右手)定则决定。

高中物理电磁感应知识点汇总

电磁感应(磁生电)第一部分电磁感应现象楞次定律 一、磁通量 1.定义:磁感应强度与面积的乘积,叫做穿过这个面的磁通量. 2.定义式:Φ=BS.说明:该式只适用于匀强磁场的情况,且式中的S是跟磁场方向垂直的面积;若不垂直,则需取平面在垂直于磁场方向上的投影面积,即Φ=BS⊥=BSsinθ,θ是S与磁场方向B的夹角. 3.磁通量Φ是标量,但有正负.Φ的正负意义是:若从一面穿入为正,则从另一面穿入为负. 4.单位:韦伯,符号:Wb. 5.磁通量的意义:指穿过某个面的磁感线的条数. 6.磁通量的变化:ΔΦ=Φ2-Φ1,即末、初磁通量之差. (1) 磁感应强度B不变,有效面积S变化时,则ΔΦ=Φ2-Φ1=B·ΔS. (2) 磁感应强度B变化,磁感线穿过的有效面积S不变时,则ΔΦ=Φ2-Φ1=ΔB·S. (3) 磁感应强度B和有效面积S同时变化时,则ΔΦ=Φ2-Φ1=B2S2-B1S1. 二、电磁感应现象 1.电磁感应现象:当穿过闭合电路的磁通量发生变化时,电路中有感应电流产生,这种利用磁场产生电流的现象叫做电磁感应.产生的电流叫做感应电流。 2.产生感应电流的条件: 表述1:闭合电路的一部分导体在磁场内做切割磁感线的运动. 表述2:穿过闭合电路的磁通量发生变化,即ΔΦ≠0,闭合电路中就有感应电流产生. 3.产生感应电动势的条件:穿过电路的磁通量发生变化。理解:电磁感应的实质是产生感应电动势.如果回路闭合,则有感应电流;回路不闭合,则只有感应电动势而无感应电流.说明:产生感应电动势的那部分导体相当于电源. 三、感应电流方向的判断 1.右手定则:伸开右手,让大拇指跟其余四指垂直,并且都跟手掌在同一平面内,让磁感线从手心垂直进入,大拇指指 向导体运动方向,其余四指所指的方向就是感应电流的方向. 2.楞次定律:感应电流具有这样的方向,就是感应电流产生的磁场,总是要阻碍引起感应电流的磁通量的变化.

(完整版)高二物理电场磁场总结(超全)

电磁场总结 知识要点: 1.电荷 电荷守恒定律 点电荷 ⑴自然界中只存在正、负两中电荷,电荷在它的同围空间形成电场,电荷间的相 互作用力就是通过电场发生的。电荷的多少叫电量。基本电荷e =⨯-161019 .C .带电体电荷量等于元电荷的整数倍(Q=ne) ⑵使物体带电也叫起电.使物体带电的方法有三种:①摩擦起电 ②接触带电 ③感应起电。 ⑶电荷既不能创造,也不能被消灭,它只能从一个物体转移到另一个物体,或从的体的这一部分转移到另一个部分,这叫做电荷守恒定律. 带电体的形状、大小及电荷分布状况对它们之间相互作用力的影响可以忽略不计时,这样的带电体就可以看做带电的点,叫做点电荷. 2.库仑定律 (1)公式 F K Q Q r =12 2 (真空中静止的两个点电荷) 在真空中两个点电荷间的作用力跟它们的电量的乘积成正比,跟它们间的距离的平方成反比,作用力的方向在它们的连线上,数学表达式为F K Q Q r =12 2 ,其中比例常数K 叫静电力常量,K =⨯90109.N m C 22 ·。(F:点电荷间的作用力(N ), Q 1、Q 2:两点电荷 的电量(C),r :两点电荷间的距离(m ),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引) (2)库仑定律的适用条件是(1)真空,(2)点电荷。点电荷是物理中的理想模型。当带电体间的距离远远大于带电体的线度时,可以使用库仑定律,否则不能使用。 3.静电场 电场线 为了直观形象地描述电场中各点的强弱及方向,在电场中画出一系列曲线,曲线上各点的切线方向表示该点的场强方向,曲线的疏密表示电场的弱度。

电场线的特点:(1)始于正电荷 (或无穷远),终止负电荷(或无穷远);(2)任意两条电场线都不相交。 电场线只能描述电场的方向及定性地描述电场的强弱,并不是带电粒子在电场中的运动轨迹。带电粒子的运动轨迹是由带电粒子受到的合外力情况和初速度共同决定。 4.电场强度 点电荷的电场 ⑴电场的最基本的性质之一,是对放入其中的电荷有电场力的作用。电场的这种性质用电场强度来描述.在电场中放入一个检验电荷q ,它所受到的电场力F 跟它所带电量的比值F q 叫做这个位置上的电场强度,定义式是q F E = ,E 是矢量,规定正电荷受电场力的方向为该点的场强方向,负电荷受电场力的方向与该点的场强方向相反。(E:电场强度(N/C),是矢量,q :检验电荷的电量(C)) 电场强度E 的大小,方向是由电场本身决定的,是客观存在的,与检验电荷无关。与放入检验电荷的正、负,及带电量的多少均无关,不能认为E 与F 成正比,也不能认为E 与q 成反比。 点电荷场强的计算式E KQ r =2 ( r:源电荷到该位置的距离(m ),Q:源电荷的电量(C)) 要区别场强的定义式E F q =与点电荷场强的计算式E KQ r = 2 ,前者适用于任何电场,后者只适用于真空(或空气)中点电荷形成的电场。 5.电势能 电势 等势面 电势能由电荷在电场中的相对位置决定的能量叫电势能。 电势能具有相对性,通常取无穷远处或大地为电势能和零点。 由于电势能具有相对性,所以实际的应用意义并不大.而经常应用的是电势能的变化.电场力对电荷做功,电荷的电势能减速少,电荷克服电场力做功,电荷的电势能增加,电势能变化的数值等于电场力对电荷做功的数值,这常是判断电荷电势能如何变化的依据。电场力对电荷做功的计算公式:W q U =,此公式适用于任何电场。电场力做功与路径无关,由起始和终了位置的电势差决定. 电势是描述电场的能的性质的物理量 在电场中某位置放一个检验电荷q ,若它具有的电势能为ε,则比值εq 叫做该位置的电势. 电势也具有相对性,通常取离电场无穷远处或大地的电势为零电势(对同一电场,电势能及电势的零点选取是一致的)这样选取零电势点之后,可以得出正电荷形成

相关主题
相关文档
最新文档