九年级春季班第9讲:相似三角形的存在性问题(教案教学设计导学案)

九年级春季班第9讲:相似三角形的存在性问题(教案教学设计导学案)
九年级春季班第9讲:相似三角形的存在性问题(教案教学设计导学案)

若与相似,理论上应有六种可能情况,但在中考中,6种情况未免过于复杂,所以题目中一般都还会隐含(或明示)着其中一组对应角关系,于是就只需讨论两种情况是否可能,并解出相关结果.

可以将相似三角形的存在问题大致分为两类:以函数为背景的和以几何为背景的。相比而言,以函数为背景的题目往往计算过程较为复杂,但思维过程相对简单,需要的是仔细认真;而以几何为背景的题目思维过程更为复杂,需要相对高的几何能力.

1、知识内容:

在纯几何问题中,证明三角形相似主要有三种方法:①两组角对应相等;②一组角相等

且其两边对应成比例;③三组边对应成比例.

在以函数为背景的压轴题中,基本都属于第二种情况,其他两种出现较少。若与相似,且,则可能有两种情况:①;②.

2、解题思路:

(1)寻找或证明两个三角形中一定相等的两个角;

(2)计算或表示出夹此两角的四条边中的三条;

(3)解出第四条边,并代回题面进行验证,舍去多余情况.

【例1】如图,在平面直角坐标系中,双曲线()与直线y = x+2都经过点

A(2,m).

(1)求k与m的值;

(2)此双曲线又经过点B(n,2),过点B的直线BC与直线y = x+2平行交y轴于点C,联结AB、AC,求的面积;

(3)在(2)的条件下,设直线y = x+2与y轴交于点D,在射线CB上有一点E,如果以点A、C、E所组成的三角形与相似,且相似比不为1,求点E的坐标.

【答案】(1)k = 8,m = 4;(2)8;(3)(10,8).

【解析】(1)将A(2,m)代入y = x + 2,得m = 4;

将A(2,4)代入,得k = 8;

(2)将B(n,2)代入,得n = 4;

设BC为,

将B(4,2)代入,得,

∴直线BC解析式为.

∴C点为(0,).

∴的面积为;

(3)D点坐标为(2,0),

∵的三个角各不相等,且为公共角,

∴当与相似时,或.

当时,相似比为,不合题意,舍去;

当时,.

∴E点坐标为(10,8).

【总结】本题一方面考查函数解析式与点的坐标的关系,另一方面考查几何图形的面积的确定以及相似三角形的存在性,注意根据公共角去分类讨论.

【例2】如图,在平面直角坐标系xOy中,顶点为M的抛物线y = ax2+bx(a >0)经过点A和x轴正半轴上的点B,AO = BO = 2,∠AOB = 120°.

(1)求这条抛物线的表达式;

(2)连结OM,求∠AOM的大小;

(3)如果点C在x轴上,且与相似,求点C的坐标.

【答案】(1);(2);(3)(4,0)或(8,0).

【解析】解:(1)∵,,

∴A点坐标为,B点坐标为.

∴代入,

解得:,.

∴抛物线解析式为:.

(2)过M作MF⊥OB于F,

∵点M的坐标为,∴.

∴.

(3)∵,,∴C点在B点右侧,与为对应角,

分情况讨论:

①时,∴.

∵,∴.

∴C点坐标为(4,0);

②时,∴.

∴.

∴C点坐标为(8,0).

综上所述,C点坐标为(4,0)或(8,0).

【总结】本题一方面考查二次函数背景下的角度的确定,注意对特殊角的发掘,另一方面考查相似的分类讨论,先找到相等的角,再分类讨论.

【例3】如图,平面直角坐标系xOy中,已知B(,0),一次函数的图像与x轴、y轴分别交于点A,C两点.二次函数的图像经过点A、点B.

(1)求这个二次函数的解析式;

(2)点P是该二次函数图像的顶点,求的面积;

(3)如果点Q在线段AC上,且与相似,求点Q的坐标.

【答案】(1);(2)15;(3)(,)或(2,3).

【解析】(1)∵直线,

当时,得;当时,得;

∴A(5,0) C(0,5)

∵二次函数的图像经过点A(5,0)、点B(,0).

∴,解得:;

∴二次函数的解析式为.

(2)由,由题意得顶点P(2,9) .

设抛物线对称轴与x轴交于G点,

∴.

(3)∠CAB =∠OAQ,AB =6,AO = 6,AC =,

○1∽,∴,

∴,(,);

○2∽,∴,

∴,(2,3),

∴当点Q的坐标为(,)或(2,3)时,与相似.

【总结】本题主要考查二次函数背景下的面积问题及相似三角形的存在性问题,注意求面积的常用方法及相似的分类讨论.

【例4】如图,在平面直角坐标系xOy中,直线AB过点A(3,0)、B(0,m)(),.

(1)求直线AB的表达式;

(2)反比例函数的图像与直线AB交于第一象限内的C、D两点(BD < BC),当AD = 2DB时,求的值;

(3)设线段AB的中点为E,过点E作x轴的垂线,垂足为点M,交反比例函数的图像于点F,分别联结OE、OF,当∽时,请直接写出满足条件的所有的值.

【答案】(1);(2);(3)或.

【解析】解:(1)∵,,

∴,∴;

(2)∵,∴,

∴,∴;

(3),

○1当时,,

∴,,

∴,∴;

○2当时,,

∴,

∴,∴;

综上:或.

【总结】本题综合性较强,一方面考查了锐角三角比在函数背景下的运用,另一方面考查了点的坐标与距离间的关系,注意对符号的判定.

1、知识内容:

在以几何为背景的此类压轴题中,几何推导的过程较为复杂,往往需要多次运用边、角关系的代换才能得到最终结果;在计算上也经常需要借助函数、方程的思想,来求得最后的解答。

2、解题思路:

(1)寻找或证明两个三角形中一定相等的两个角;

(2)计算或表示出夹此两角的四条边;

(3)根据比例关系列出方程,解出未知边的长度等要求,并代回验证.

【例5】如图1,已知梯形ABCD中,AD//BC,AB = DC = 5,AD = 4.M、N分别是边AD、BC上的任意一点,联结AN、DN.点E、F分别在线段AN、DN上,且ME//DN,MF//AN,联结EF.

(1)如图2,如果EF//BC,求EF的长;

(2)如果四边形MENF的面积是面积的,求AM的长;

(3)如果BC = 10,试探求、、能否两两相似?如果能,求AN的长;如果不能,请说明理由.

【答案】(1)EF的长是2;(2)AM的长为1或3;(3).

【解析】解:(1)∵EF//BC,AD//BC,∴EF//AD,∴.

又∵EM//ND,FM//NA,∴,.

∴,即AM=MD.∴AE=EN,DF=FN.

∴.

(2)∵EM//DN,MF//AN,∴,.

∴,.

又∵,∴.

∴或.

∴AM的长为1或3.

(3)先考虑与,

∵,∴或.

分情况讨论

○1时,可得:.

过A作AH⊥BC于H,可得:,,.

∴,.

∴.

又∵,

∴.

∴当,时,三个三角形两两相似.

○2时,可得,,与情况①相同.

综上所述,.

【总结】本题综合性较强,考查了梯形背景下的面积问题及相似三角形的存在性问题,注意利用梯形的性质进行分析.

【例6】如图1,已知在直角梯形ABCD中,AD//BC,∠ABC = 90°,AB = 4,AD = 3,,点P是对角线BD上一动点,过点P作PH⊥CD,垂足为H.

(1)求证:∠BCD =∠BDC;

(2)如图1,若以P为圆心、PB为半径的圆和以H为圆心、HD为半径的圆外切时,求DP的长;

(3)如图2,点E在BC的延长线上,且满足DP = CE,PE交DC于点F,若和

相似,求DP的长.

图1 图2

【解析】(1)略;(2)DP的长为;(3)DP的长为.

【解析】解:(1)作DG⊥BC于G,可得,,,.

∵,∴,∴.

∴,∴∠BCD=∠BDC.

(2)设DP=x,则.∵,

∴,.∵两圆外切,∴.

∴,解得:;

(3)作PM//BE,∴PM=DP=x,.

由,.

当∽时,,即,解得:(舍);

当∽时,,即,解得:;

∴DP的长为.

【例7】如图,已知BC是半圆O的直径,,过线段BO上一动点D,作交半圆O于点A,联结AO,过点B作,垂足为点H,BH的延长线交半圆O于点F.

(1)求证:;

(2)设,,求关于的函数关系式;

(3)如图2,若联结F A并延长交CB的延长线于点G,当与相似时,求BD的长度.

【答案】(1)略;(2);(3)BD = .

【解析】(1)证明:∵ADBC,BHAO,∴∠ADO =∠BHO = 90°

在ADO与BHO中,,

∴ADO ≌BHO,∴OH = OD

又∵OA = OB,∴AH = BD;

(2)联结AB、AF

∵AO是半径,AO弦BF,∴,∴AB=AF,∴∠ABF=∠AFB.

在RtADB与RtBHA中,

∴RtADB∠RtBHA,∴∠ABF=∠BAD,∴∠BAD =∠AFB.

又∵∠ABF =∠EBA,∴BEA∠BAF,∴,∴.

∵,∴.

∵∠ADO =∠ADB=90° ∴,,

∴= .

∵直径BC = 8,BD =,∴

∴.

(3)联结OF

∵∠GFB是公共角,∠F AE >∠G

∴当F AE∠FBG时,∠AEF =∠G

∵∠BHA=∠ADO = 90°

∴∠AEF +∠DAO = 90°,∠AOD +∠DAO = 90°

∴∠AEF =∠AOD

∴∠G =∠AOD

∴AG = AO = 4

∵∴∠AOD =∠AOF

∴∠G =∠AOF,又∴∠GFO是公共角

∴F AO∠FOG

∵,AB = AF∴

∴,解得:是原方程的解.

∵> 4,∴舍去,

∴BD=.

【总结】本题主要考查圆背景下的函数解析式及相似的存在性问题,主要运用了圆心角定理、全等的性质、勾股定理及相似三角形的判定等知识点.

【例8】如图,在中,,,BC = 7,点D是边延长线上的一点,AE⊥BD,垂足为点E,AE 的延长线交CA的平行线BF于点F,联结CE交AB于点G.

(1)当点E是BD的中点时,求的值;

(2)的值是否随线段AD长度的改变而变化,如果不变,求出的值;

如果变化,请说明理由;

(3)当与相似时,求线段AF的长.

【答案】(1);(2);.

【解析】解:(1)∵AE⊥BD,BE=DE,∴AB=AD,

∵,,BC=7,

∴,∴,

∵,∴,

∵AE⊥BD,∴,

∴,

∵BF∥CD,∴,∴

∴;

(2)的值不变.

∵,∴,

又,∴∽,∴,

∵,,∴,

∵,∴∽,∴,

∴;

(3)∵与相似,又∽,

∴∽,∵,

,∴,又,∴,

∵,∴,

∴,∵,,∴,

过点B作BH⊥CE于点H.∴,,∴,

∵,∴.

【习题1】已知抛物线()经过A(,0)、B(4,0)两点,与y轴交于点C.(1)求抛物线()的解析式,并求出顶点P的坐标;

(2)求∠APB的正弦值;

(3)直线与y轴交于点N,与直线AC的交点为M,当与相似

时,求点M的坐标.

【答案】(1)(1,);(2);(3)M点坐标为或.

【解析】解:(1)将A、B两点代入,解得:,.

∴抛物线为,顶点P的坐标为(1,);

(2)作AH⊥BP于H,可得:

,.

∴,

∴.

(3)∵为直角三角形,

∴为直角三角形,点M在C的左侧.

∴.

∴或.

又∵,,,

∴或.

∴M点坐标为或.

【总结】本题综合性较强,考查的内容比较多,包含了二次函数的解析式及顶点坐标的确定,还有几何图形的面积的确定,以及相似背景下的点的坐标的确定,解题时注意进行分析,不要漏解.

【习题2】如图,已知矩形ABCD中,AB = 12cm,AD = 10cm,⊙O与AD、AB、BC三边都相切,与DC交于点E、F.已知点P、Q、R分别从D、A、B三点同时出发,沿矩形ABCD的边逆时针方向匀速运动,点P、Q、R的运动速度分别是1 cm/s、x cm/s、

1.5 cm/s,当点Q到达点B时停止运动,P、R两点同时停止运动.设运动时间为t(单

位:s).

(1)求证:DE = CF;

(2)设x = 3,当与相似时,求t的值;

(3)设关于直线PQ对称的图形的,当t和x分别为何值时,点A′与圆

心O恰好重合,求出符合条件的t、x的值.

【答案】(1)略;(2)t的值为或;(3),.

【解析】(1)设⊙O分别切AD、AB、BC于M、N、T,作OH⊥DC于H,连接OM、OT、OD、OC,

∴,,EH = FH,

∴四边形ABTM为长方形.

∴AM = BT.∴DM = CT.

又∵OM = OT,,

∴.

∴OD = OC.∴DH = CH.∴DE = CF.

(2)当时,,,,,且.

∵,∴或.

∴或.

解得:(负舍)或.

∴当与相似时,t的值为或.

(3)连接AO,MN,

∵四边形MANO为正方形,

∴MN垂直平分AO,即A、O两点关于直线M、N对称.

∴符合条件时,P在M点,Q在N点.

此时,,.

【总结】本题综合性较强,主要考查动点背景下的相似问题,注意分类讨论.

【作业1】如图,中,∠C = 90°,∠A = 30°,BC = 2,CD是斜边AB上的高,点E为边AC上一点(点E不与点A、C重合),联结DE,作CF⊥DE,CF与边AB、线段DE 分别交于点F、G.

(1)求线段CD、AD的长;

(2)设CE = x,DF = y,求y关于x的函数解析式,并写出它的定义域;

(3)联结EF,当与相似时,求线段CE的长.

【答案】(1),;(2)();

(3)CE的长为或.

【解析】解:(1)∵CD⊥AB,

∴,,

∴,.

(2)∵,,∴.

∴,∴,

∴();

(3)∵,分情况讨论:

①时,,∴EF//DC.

∴,即.

解得:.

②时,,∴.

又∵CF⊥DE,∴.

∴.

综上所述:CE的长为或.

【总结】本题主要考查直角三角形背景下的相似三角形的存在性问题,注意对基本模型的归纳总结,解题时注意进行分类讨论.

【作业2】如图,在中,,,,点D是边AC上的一点,AD = 8.点E是边AB上一点,以点E 为圆心,EA为半径作圆,经过点D.点F是边AC上一动点(点F不与A、C重合),作,交射线BC于点G.

(1)用直尺圆规作出圆心E,并求圆E的半径长(保留作图痕迹);

(2)当点G在边BC上时,设AF = x,CG = y,求y关于x的函数解析式,并写出它的定义域;

(3)联结EG,当与相似时,推理判断以点G为圆心、CG为半径的圆G

与圆E可能产生的各种位置关系.

【答案】(1)半径为5;(2);(4 < x < 14);

(3)与相交或外离.

【解析】(1)设AD的垂直平分线与AB交于点E,垂足是点H.

在中,由,AD = 8,

得:AE = 5,EH = 3.

所以圆E的半径长等于5;

(2)∵,,∴.

又∵,∴∽.

∴.∴.

化简得:(4 < x < 14);

(3)①当点G在边BC上时,

与相似,有两种可能.

当时,可得:CF // EG.

易证四边形HCGE是平行四边形.

∴,.

∵,∴两圆外离.

当时,延长EF与BC的延长线相交于点M,

可证得,由≌,可得:点F是CH的中点.

∴,,.

∵,,∴两圆相交.

②当点G在BC延长线上时,

与相似,只能是.

设EG与AC交于点N,

易证:点N是EG的中点.

由≌,

可得CG = 3,.

∵,

∴两圆外离.

综上所述:当与相似时,与相交或外离.

【总结】本题综合性较强,考查的知识点比较多,主要是几何图形背景下的圆与圆的问题关系,解题时注意对相似性质的综合运用.

最新浙教版九年级数学上册《相似三角形3》教学设计(精品教案)

4.3 相似三角形 教学目标: 1.了解相似三角形的概念,会表示两个三角形相似. 2.能运用相似三角形的概念判断两个三角形相似. 3.理解“相似三角形的对应角相等,对应边成比例”的性质. 重点和难点: 1.本节教学的重点是相似三角形的概念 2.在具体的图形中找出相似三角形的对应边,并写出比例式,需要学生具有一定的分辨能力,是本节教学的难点. 知识要点: 1、对应角相等,对应边成比例的两个三角形叫做相似三角形. 2、相似三角形的对应角相等,对应边成比例. 3、相似三角形对应边的比,叫做两个相似三角形的相似比(或相似系数) 重要方法: 1、全等三角形是相似三角形的特殊情况,它的相似比是1. 2、相似三角形中,利用对应角寻找对应边;反过来利用对应边寻找对应角. 3、书写相似三角形时,需要把对应顶点的字母写在对应的位置上. 教学过程

一.创设情境,导入新课 1.课件出示:①国旗上的☆,②同一底片不同尺寸的照片.以上图形之间可以通过怎样的图形变换得到? 2.经过相似变换后得到的像与原像称为相似图形.那么将一个三角形作相似变换后所得的像与原像称为相似三角形 二.合作学习,探索新知 1.合作学习 如图1,在方格纸内先任意画一个△ABC,然后画出△ABC 经某一相似变换(如放大或缩小若干倍)后得到像△A ′B ′C ′(点A ′、B ′、C ′分别对应点A 、B 、C ). 问题讨论1:△A ′B ′C ′与△ABC 对应角之间有什么关系? 问题讨论2:△A ′B ′C ′与△ABC 对应边之间有什么关系? 学生相互比较得到结论:对应角相等,对应边成比例. 2.由合作学习定义相似三角形的概念 (1)相似三角形:一般地,对应角相等,对应边成比例的两个A B C A ′ B ′C ′

27.2.1相似三角形的判定(3)-教学设计

教学时间 课题 27.2.1相似三角形的判定(3) 课型 新授课 教 学 目 标 知 识 和 能 力 掌握“两角对应相等,两个三角形相似”的判定方法. 能够运用三角形相似的条件解决简单的问题. 过 程 和 方 法 经历两个三角形相似的探索过程,进一步发展学生的探究、交流能力. 情 感 态 度 价值观 教学重点 三角形相似的判定方法3——“两角对应相等,两个三角形相似” 教学难点 三角形相似的判定方法3的运用. 教学准备 教师 多媒体课件 学生 “五个一” 课 堂 教 学 程 序 设 计 设计意图 一、课堂引入 1.复习提问: (1)我们已学习过哪些判定三角形相似的方法? (2)如图,△ABC 中,点D 在AB 上,如果AC 2=AD ?AB , 那么△ACD 与△ABC 相似吗?说说你的理由. (3)如(2)题图,△ABC 中,点D 在AB 上,如果∠ACD= ∠B , 那么△ACD 与△ABC 相似吗?——引出课题. (4)教材P46的探究4 . 二、例题讲解 例1(教材P46例2). 分析:要证PA ?PB=PC ?PD ,需要证PB PC PD PA ,则需要证明这四条线段所在的两个三角形相似.由于所给的条件是圆中的两条相交弦,故需要先作辅助线构造三角形,然后利用圆的性质“同弧上的圆周角相等”得到两组角对应相等,再由三角形相似的判定方法3,可得两三角形相似. 证明:略 例2 (补充)已知:如图,矩形ABCD 中,E 为BC 上一 点,DF ⊥AE 于F ,若AB=4,AD=5,AE=6,求DF 的长. 分析:要求的是线段DF 的长,观察图形,我们发现AB 、 AD 、AE 和DF 这四条线段分别在△ABE 和△AFD 中,因此只

相似三角形的存在性(讲义及答案).

相似三角形的存在性(讲义) 知识点睛 1.存在性问题的处理思路 ①分析不变特征 分析背景图形中的定点,定线,定角等不变特征. ②分类、画图 结合图形形成因素(判定,定义等)考虑分类,画出符合题意的图形. 通常先尝试画出其中一种情形,分析解决后,再类比解决其他情形. ③求解、验证 围绕不变特征、画图依据来设计方案进行求解;验证时,要回归点的运动范围,画图或推理,判断是否符合题意. 注:复杂背景下的存在性问题往往需要研究背景图形,几何背景往往研究点,线,角;函数背景研究点坐标,表达式等.2.相似三角形的存在性不变特征及特征下操作要点举例: 一般先从角(不变特征)入手,分析对应关系后,作出符合题意图形,再借助不变特征和对应边成比例列方程求 解.常见特征如一组角对应相等,这一组相等角顶点为确定对应点,结合对应关系分类后,作出符合题意图形,一般利用对应边成比例列方程求解.

精讲精练 1.如图,将长为8cm,宽为5cm的矩形纸片ABCD折叠,使 点B落在CD边的点E处,压平后得到折痕MN,点A的对称点为点F,CE=4cm.若点G是矩形边上任意一点,则当△ABG与△CEN相似时,线段AG的长为. 2.如图,抛物线y=-1x2+10x-8经过A,B,C三点,BC⊥OB, 33 AB=BC,过点C作CD⊥x轴于点D.点M是直线AB上方的抛物线上一动点,作MN⊥x轴于点N,若△AMN与△ACD 相似,则点M的坐标为.

3.如图,已知抛物线y=3x2+bx+c与坐标轴交于A,B,C三 4 点,点A的坐标为(-1,0),过点C的直线y=3 4t x-3与x轴 交于点Q,点P是线段BC上的一个动点,过P作PH⊥OB 于点H.若PB=5t,且0<t<1. (1)点C的坐标是,b=,c=.(2)求线段QH的长(用含t的代数式表示). (3)依点P的变化,是否存在t的值,使以P,H,Q为顶点的三角形与△COQ相似?若存在,求出所有符合条件的t 值;若不存在,说明理由.

《相似三角形的性质》教案

《相似三角形的性质》教案 课标要求 了解相似三角形的性质定理:相似三角形对应线段的比等于相似比;面积比等于相似比的平方. 教学目标 知识与技能:1.了解相似三角形的性质定理:相似三角形对应线段的比等于相似比;面积比等于相似比的平方;2.能够运用相似三角形的性质定理解决相关问题.过程与方法:通过操作、观察、猜想、类比等活动,进一步提高学生的思维能力和推理论证能力. 情感、态度与价值观:通过对性质的发现和论证,提高学习热情,增强探究意识. 教学重点 相似三角形性质定理的理解与运用. 教学难点 探究相似三角形面积的性质,并运用相似三角形的性质定理解决问题. 教学流程 一、情境引入 三角形中有各种各样的几何量,如三条边的长度,三个内角的度数,高、中线、角平分线的长度,以及周长、面积等等. 问题:如果两个三角形相似,那么它们的这些几何量之间有什么关系呢? 引出课题:今天,我们就来研究相似三角形的这些几何量之间的关系. 二、探究归纳 回顾:从相似三角形的定义出发,能够得到相似三角形的什么性质? 相似三角形的对应角相等,对应边成比例. 问题:相似三角形的其他几何量可能具有哪些性质? 探究:如图1,△ABC∽△A′B′C′,相似比为k,它们对应高、对应中线、对应角平分线的比各是多少. 图1

图2 问题1:如图2,△ABC ∽△A ′B ′C ′,相似比为k ,分别作△ABC 和△A ′B ′C ′对应高AD 和A ′D ′.AD 和A ′D ′的比是多少? 追问:对应高在哪两个三角形中,它们相似吗?如何证明? 解:∵△ABC ∽△A ′B ′C ′ ∴∠B =∠B ′ ∵△ABD 和△A ′B ′D ′都是直角三角形 ∴△ABD ∽△A ′B ′D ′ ∴==''''AD AB k A D A B 问题2:它们的对应中线、角平分线的比是否也等于相似k ? 结论:相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比. 问题3:如果△ABC ∽△A ′B ′C ′,相似比为k ,对应线段的比呢? 推广:相似三角形对应线段的比等于相似比. 问题4:如果△ABC ∽△A ′B ′C ′,相似比为k ,它们的周长有什么关系? 结论:相似三角形的周长比等于相似比. 思考:相似三角形面积比与相似比有什么关系? 如图,△ABC ∽△A ′B ′C ′,相似比为k ,分别作△ABC 和△A ′B ′C ′对应高AD 和A ′D ′. 2122 ABC A B C BC AD S BC AD k k k S B C A D B C A D ?'''??==?=?=''''''''? 结论:相似三角形面积比等于相似比的平方. 三、应用提高 例:如图,在△ABC 和△DEF 中,AB =2DE ,AC =2DF ,∠A =∠D .若△ABC 的边

人教版九年级下册相似三角形数学教案

相似三角形 教学目标:使学生掌握相似三角形的判定与性质 教学重点:相似三角形的判定与性质 教学过程: 一 知识要点: 1、相似形、成比例线段、黄金分割 相似形:形状相同、大小不一定相同的图形。特例:全等形。 相似形的识别:对应边成比例,对应角相等。 成比例线段(简称比例线段):对于四条线段a 、b 、c 、d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即d c b a (或a :b= c : d ),那么,这四条线段叫做成比例线段,简称比例线段。 黄金分割:将一条线段分割成大小两条线段,若小段与大段的长度之比等于大段与全长之比,则可得出这一比值等于0·618…。这种分割称为黄金分割,点P 叫做线段AB 的黄金分割点,较长线段叫做较短线段与全线段的比例中项。 例1:(1)放大镜下的图形和原来的图形相似吗? (2)哈哈镜中的形象与你本人相似吗? (3)你能举出生活中的一些相似形的例子吗/ 例2:判断下列各组长度的线段是否成比例: (1)2厘米,3厘米,4厘米,1厘米 (2)1·5厘米,2·5厘米,4·5厘米,6·5厘米 (3)1·1厘米,2·2厘米,3·3厘米,4·4厘米 (4)1厘米, 2厘米,2厘米,4厘米。 例3:某人下身长90厘米,上身长70厘米,要使整个人看上去成黄金分割,需穿多高的高跟鞋? 例4:等腰三角形都相似吗? 矩形都相似吗? 正方形都相似吗? 2、相似形三角形的判断: a 两角对应相等 b 两边对应成比例且夹角相等

c 三边对应成比例 3、相似形三角形的性质: a 对应角相等 b 对应边成比例 c 对应线段之比等于相似比 d 周长之比等于相似比 e 面积之比等于相似比的平方 4、相似形三角形的应用: 计算那些不能直接测量的物体的高度或宽度以及等份线段 例题 1 ABCD 中,G 是BC 延长线上一点,AG 交BD 于点E ,交DC 于点F ,试找出图中所有的相似三角形 2如图在正方形网格上有6个斜三角形:a:ABC ; b: BCD c: BDE d: BFG e: FGH f: EFK ,试找出与三角形a 相似的三角形 3、在 中,AB=8厘米,BC=16厘米,点P 从点A 开始沿AB 边向点B 以2厘米每秒的速度移动,点Q 从点B 开始沿BC 向点C 以4厘米每秒的速度移动,如果P 、Q 分别从A 、B PBQ ABC 相似? B C G

《相似三角形的判定1 2 3》教案

27.2 相似三角形的判定(一) 主备:司娟 审核:九年级数学备课组 一、教学目标 (一)通过探索相似三角形判定定理的“预备定理”的过程,培养学生的动手操作能力,观察、分析、猜想和归纳能力,渗透类比、转化的数学思想方法。 (二)利用相似三角形的判定定理的“预备定理”进行有关判断及计算,训练学生的灵活运用能力,提高表达能力和逻辑推理能力。 (三)通过主动探究、合作交流,在学习活动中体验获得成功的喜悦,激发学生学习的求知欲,感悟数学知识的奇妙无穷。 二、教学重点难点 [教学重点] 相似三角形判定定理的预备定理的探索 [教学难点] 相似三角形判定定理的预备定理的有关证明 三、 教学过程 (一)复习 1、相似图形指的是什么? 2、什么叫做相似三角形? (二)引入 如图1,△ABC 与△A ’B ’C ’相似. 图1 记作“△ABC ∽△A ’B ’C ’”, 读作“△ABC 相似于△A ’B ’C ’”. [注意]:两个三角形相似,用字母表示时,与全等一样,应把表示对应顶点的字母写在对应位置上,这样便于找出相似三角形的对应边和对应边角. 对于△ABC ∽△A ’B ’C ’,根据相似形的定义,应有 ∠A =∠A ’, ∠B =∠B ’ , ∠C =∠C ’, ''B A AB =''C B BC =' 'A C CA . [问题]:将△ABC 与△A ’B ’C ’相似比记为k 1,△A ’B ’C ’与△ABC 相似比记为k 2,那么k 1 与k 2有什么关系? k 1= k 2能成立吗? (三)[探究1] 1、如图,任意画两条直线l 1、l 2,再画三条与l 1、l 2 相交的平行线l 3、l 4 、l 5.分别度量l 3、l 4 、l 5 在l 1上截得的两条线段AB,BC 和在l 2上截得的两条线段DE,EF 的长 度, 相等吗? 平行线分线段成比例定理:三条平行线截两条直线所得的 EF DE BC AB 与

相似三角形存在性探究精品

文档收集于互联网,已重新整理排版.word 版本可编辑,有帮助欢迎下载支持. 1文档来源为:从网络收集整理.word 版本可编辑. 【关键字】条件、速度、方向 相似三角形存在性探究 如图,点D 在△ABC 的边上. (1)要判断△ADB 与△ (2)要判断△ADB 与△(3)通过(1)(2)例1如图,在△ABC 的边AB 上有一点E ,AB =4cm AE =1cm AC =3cm 。在AC 边上是否存 在点F ,使得△AEF 和△ABC 相似?若存在,求出AF 的长。 变式 如图, 点E 在AB 边上从点A 向点B 运动,速度为2cm/s , 点F 同时从点C 向点A 运动,速度为1cm/s,设运动时间为t 秒,问是否存在t 的值,使得 △AEF 和△ABC 相似?若存在,试求出t 的值,若不存在,请说明理由。 例2如图,在平面点直角坐标系xoy 中,A (1,0)、B (3,0)、C (0,-3)、P (2,1)请问在x 轴上是 否存在点Q,使以P ,B,Q 为顶点的三角形与△ABC 相似?若存在,求出点Q 的坐标,若不存 在,请说明理由。 变式 如图,在平面点直角坐标系xoy 中,A (1,0)、B (3,0)、C (0,-3)、P (2,1) (1)求过A 、B 、C 三点的抛物线解析式 (2)请问在x 轴下方的抛物线上是否存在点M ,过M 作M N ⊥x 轴于点N,使以A,M,N 为顶点的 三角形与△BCP 相似?若存在,求出点M 的坐标,若不存在,请说明理由。 做一做 如图,抛物线 与x 轴交于A ,B 两点(A 点在B 点左侧)与y 轴交于点C ,动直线EF (EF //x 轴)从点C 出发,以每秒1个单位长度的速度沿y 轴负 方向平移,且分别交y 轴、线段BC 于E 、F 两点,动点P 同时从点B 出发,在线段OB 上 以每秒2个单位长度的速度向原点O 运动,是否存在t 的值,使△BPF 与△ABC 相似?若 存在试求出t 的值,若不存在,请说明理由。 B 42 3812+-=x x y O

九年级数学上册第23章图形的相似23.3相似三角形23.3.1相似三角形教案新版华东师大版

23.3 相似三角形 23.3.1 相似三角形 1.知道相似三角形的概念. 2.能够熟练地找出相似三角形的对应边和对应角. 3.会根据概念判断两个三角形相似,能说出相似三角形的相似比,由相似比求出未知的边长. 4.掌握利用“平行于三角形一边的直线,和其它两边(或两边的延长线)相交所构成的三角形与原三角形相似”来判断两个三角形相似. 重点 掌握相似三角形的定义、表示法,并能根据定义判断两个三角形是否相似. 难点 熟练找出对应元素,在此基础上根据定义求线段长或角的度数. 一、情境引入 复习:什么是相似图形?识别两个多边形是否相似的标准是什么? 二、探究新知 教师展示多媒体,从复习引入,引导学生进行探究. 1.相似三角形的有关概念 由复习中引入,如果两个多边形的对应边成比例,对应角都相等,那么这两个多边形相似. 三角形是最简单的多边形.由此可以说什么样的两个三角形相似? 如果两个三角形的三条边都成比例,三个角对应相等,那么这两个三角形相似,如在△ABC 与△A′B′C′中,∠A =A′,∠B =B′,∠C =C′,AB A′B′=BC B′C′=AC A′C′ ,那么△ABC 与△A′B′C′相似,记作△ABC∽△A′B′C′.“∽”是表示相似的符号,读作“相似于”,这样两个三角形相似就读作“△ABC 相似于△A′B′C′”. 由于∠A =∠A′,∠B =∠B′,∠C=∠C′,所以点A 与点A′是对应顶点,点B 与点B′是对应顶点,点C 与点C′是对应顶点,书写相似时,通常把对应顶点写在对应位置上,以便比较容易找到相似三角形中的对应角、对应边.如果记AB A′B′=BC B′C′=AC A′C′ =k,那么这个比值k 就表示这两个相似三角形的相似比,相似比就是它们的对应边的比,它有顺序关系.如 △ABC∽△A′B′C′,它的相似比为k,即指AB A′B′ =k,那么△A′B′C′与△ABC 的相似比应是A′B′AB ,就不是k 了,应为多少呢?同学们想一想. 如果△ABC∽△A′B′C′,相似比k =1,你会发现什么呢?AB A′B′=BC B′C′=AC A′C′ =1,所以可得AB =A′B′,BC =B′C′,AC =A′C′,因此这两个三角形不仅形状相同,而且大小也相同,这样的三角形称之为全等三角形,全等三角形是相似三角形的特例.试问:①全等

相似三角形教案设计

相似三角形 【教学目标】 1.知道相似三角形的概念;能够熟练地找出相似三角形的对应边和对应角;会根据概念判断两个三角形相似。 2.能说出相似三角形的相似比,由相似比求出未知的边长。 3.在探索活动中,发展发现问题、解决问题的意识和合作交流的习惯。 【教学重难点】 1.掌握相似三角形的定义、表示法,并能根据定义判断两个三角形是否相似。 2.熟练找出对应元素,在此基础上根据定义求线段长或角的度数。 【教学过程】 一、复习 什么是相似形?识别两个多边形是否相似的标准是什么? 二、新课 1.相似三角形的有关概念: 由复习中引入,如果两个多边形的对应边成比例,对应角都相等,那么这两个多边形相似。三角形是最简单的多边形。由此可以说什么样的两个三角形相似? (1)如果两个三角形的三条边都成比例,三个角对应相等,那么这两个三角形相似,如 在△ABC 与△A ′B ′C ′中,∠A =A ′,∠B =∠B ′,∠C =∠C ′== AB A ′B ′BC B ′C ′AC A ′C ′ 那么△ABC 与△A ′B ′C ′相似,记作△ABC ∽△A ′B ′C ′;“∽”是表示相似的符号,读作“相似于”,这样两三角形相似就读作:“△ABC 相似于△A ′B ′C ′”。 (2)由于∠A =∠A ′,∠B =∠B ′,∠C =∠C ′,所以点A 的对应顶点是A ′,B 与B ′是对应顶点,C 与C ′是对应顶点,书写相似时,通常把对应顶点写在对应位置上,以便 比较容易找到相似三角形中的对应角、对应边。如果记===K ,那么这AB A ′B ′BC B ′C ′AC A ′C ′ 个K 就表示这两个相似三角形的相似比。相似比就是它们的对应边的比,它有顺序关系。如 △ABC ∽△A ′B ′C ′,它的相似比为K ,即指=K ,那么△A ′B ′C ′与△ABC 的AB A ′B ′ 相似比应是,就不是K 了,应为多少呢?同学们想一想?A ′B ′AB

北师大版九年级数学上册《相似三角形的性质》教案

《相似三角形的性质》教案 教学目标 知识与技能 1、理解掌握相似三角形周长比、面积比与相似比之间的关系;掌握定理的证明方法. 2、灵活运用相似三角形的判定和性质,解决相关问题. 过程与方法: 1、对性质定理的探究经历观察——猜想——论证——归纳的过程,培养学生主动探究、合作交流的习惯和严谨治学的态度. 2、通过实际情境的创设和解决,使学生逐步掌握把实际问题转化为数学问题,复杂问题转化为简单问题的思想方法. 3、通过例题的拓展延伸,体会类比的数学思想,培养学生大胆猜想、勇于探索、勤于思考的数学品质,提高分析问题和解决问题的能力. 情感与态度: 在学习和探讨的过程中,体验特殊到一般的认知规律;通过学生之间的交流合作,软件应用的验证,让学生体验成功的喜悦,树立学习的自信心;通过对生活问题的解决,体会数学知识在实际中的广泛应用. 教学重点 相似三角形性质定理的探索、理解及应用. 教学难点 综合应用相似三角形的性质与判定,探索三角形中面积与线段之间的关系. 教学方法与手段 探究式教学、小组合作学习、多媒体教学. 教学过程 一、创设情境,引入新课 1、如果两个三角形相似,那么它们的对应边、对应角各有什么特性? 研究三角形的问题,除了探索边和角之外,我们还经常计算它们的 周长和面积,那么相似三角形的周长和面积有什么特性呢? 2、问题情境: 某施工队在道路拓宽施工时遇到这样一个问题,马路旁原有一个面积为100平方米、周长为80米的三角形绿化地.由于马路的拓宽,绿地被削去了一个角,变成了一个梯形,原绿化地一边AB的长由原来的30米缩短成18米.现在的问题是:

被削去的部分面积有多少?周长是多少?你能解决这个问题吗? 二、实践交流,探索新知 1、做一做: 学生:将课前准备好的正方形网格中两个三角形的各边进行测量和计算. 2、想一想:你发现上面两个相似三角形的周长比和相似比有什么关系? 3、验一验:是不是任何两个相似三角形都有此关系呢?你能加以验证吗? 4、在学生思考、讨论的基础上,鼓励并引导学生分析、讨论证法,写出规范的证明过程. 三、归纳小结: 相似三角形性质定理:相似三角形的周长比等于相似比,面积比等于相似比的平方. 四、基础训练,加深理解 练一练:已知两个三角形相似,请完成下列表格: 比或周长比则要开平方. 五、综合应用,解决问题 已知:如图,DE ∥BC ,AB =30m ,BD =18m ,△ABC 的周长为80m ,面积为100m 2,求△ ADE 的周长和面积? 解析:∵DE ∥BC ∴△ADE ∽△ABC D

相似三角形的判定教案

《相似三角形的判定》教案 课标要求 1.掌握基本事实:两条直线被一组平行线所截,所得的对应线段成比例; 2.了解相似三角形的判定定理:两角分别相等的两个三角形相似、两边成比例且夹角相等的两个三角形相似、三边成比例的两个三角形相似; 3.了解相似三角形判定定理的证明. 教学目标 知识与技能: 1.了解相似三角形及相似比的概念; 2.掌握平行线分线段成比例的基本事实及推论; 3.掌握相似三角形判定方法:平行线法、三边法、两边夹一角法、两角法; 4.进一步熟悉运用相似三角形的判定方法解决相关问题. 过程与方法: 类比全等三角形的判定方法探究相似三角形的判定,体会特殊与一般的关系,从而掌握相似三角形的判定方法. 情感、态度与价值观: 发展学生的探究能力,渗透类比思想,体会特殊与一般的关系. 教学重点 掌握相似三角形的概念,能运用相似三角形的判定方法判定两个三角形相似. 教学难点 探究三角形相似的条件,并运用相似三角形的判定定理解决问题. 教学流程 一、知识迁移 类比相似多边形的相关知识回答下面的问题: 1.对应角相等,对应边成比例的两个三角形,叫做相似三角形. 2.相似三角形的对应角相等,对应边成比例. 师介绍:“相似”用符号“∽”来表示,读作“相似于”,2题可以用符号表示为 ∵△ABC∽△DEF,

∴A=∠D,∠B=∠E,∠C=∠F;AB AC BC DE DF EF ==. 如何判断两个三角形相似呢?反过来 ∵A=∠D,∠B=∠E,∠C=∠F;AB AC BC DE DF k EF === ∴△ABC∽△DEF. 师介绍:△ABC与△DEF的相似比为k,△DEF与△ABC的相似比为1 k . 追问:当k=1,这两个三角形有怎样的关系? 引出课题:如何判断两个三角形相似呢?有没有更简单的方法?回顾学习三角形全等时,我们知道,除了可以验证所有的角和边分别相等来判定两个三角形全等外,还有判定的简便方法(SSS,SAS,ASA,AAS).类似地,判定两个三角形相似时,是不是也存在简便的判定方法呢? 二、探究归纳 (一)平行线分线段成比例 探究1:如图,任意画两条直线l1,l2,再画三条与l1,l2都相交的平行线l3,l4,l5.分别度量l3,l4,l5在l1上截得的两条线段AB ,BC和在l2上截得的两条线段DE,EF的长度, AB BC 与 DE EF 相等吗?任意平移l5. AB BC 与 DE EF 还相等吗? 当l3//l4//l5时, 有AB DE BC EF =, BC EF AB DE =, AB DE AC DF =, BC EF AC DF =等. 基本事实:两条直线被一组平行线所截,所得的对应线段成比例.迁移:将基本事实应用到三角形中, 当DE//BC时,有

初中数学《相似三角形》优秀教案

相似三角形 一、知识概述 (一)相似三角形 1、对应角相等,对应边成比例的两个三角形,叫做相似三角形. 温馨提示: ①当且仅当一个三角形的三个角与另一个(或几个)三角形的三个角对应相等,且三条对应边的比相等时,这两个(或几个)三角形叫做相似三角形,即定义中的两个条件,缺一不可; ②相似三角形的特征:形状一样,但大小不一定相等; ③相似三角形的定义,可得相似三角形的基本性质:对应角相等,对应边成比例,其应用广泛. 2、相似三角形对应边的比叫做相似比. 温馨提示: ①全等三角形一定是相似三角形,其相似比k=1.所以全等三角形是相似三角形的特例.其区别在于全等要求对应边相等,而相似要求对应边成比例. ②相似比具有顺序性.例如△ABC∽△A′B′C′的对应边的比,即相似比为k,则△A′B′C′∽△ABC的相似比,当且仅当它们全等时,才有k=k′=1. ③相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小的倍数,这一点借助相似三角形可观察得出. 3、如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形. 4、相似三角形的预备定理:如果一条直线平行于三角形的一条边,且这条直线与原三角形的两条边(或其延长线)分别相交,那么所构成的三角形与原三角形相似.

①定理的基本图形有三种情况,如图其符号语言: ∵DE∥BC,∴△ABC∽△ADE; ②这个定理是用相似三角形定义推导出来的三角形相似的判定定理.它不但本身有着广泛的应用,同时也是证明下节相似三角形三个判定定理的基础,故把它称为“预备定理”; ③有了预备定理后,在解题时不但要想到上一节“见平行,想比例”,还要想到“见平行,想相似”. (二)相似三角形的判定 1、相似三角形的判定: 判定定理(1):两角对应相等,两三角形相似. 判定定理(2):两边对应成比例且夹角相等,两三角形相似. 判定定理(3):三边对应成比例,两三角形相似. 温馨提示: ①有平行线时,用上节学习的预备定理; ②已有一对对应角相等(包括隐含的公共角或对顶角)时,可考虑利用判定定理(1)或判定定理(2); ③已有两边对应成比例时,可考虑利用判定定理2或判定定理3.但是,在选择利用判定定理2时,一对对应角相等必须是成比例两边的夹角对应相等. 2、直角三角形相似的判定:斜边和一条直角边对应成比例,两直角三角形相似.

【最新】九年级数学相似三角形教案北师大版

第26课 相似三角形 〖知识点〗 相似三角形、相似三角形的判定、直角三角形相似的判定 〖大纲要求〗 1. 了解相似三角形的概念,掌握相似三角形的判定及直角三角形相似的判定; 2. 会用相似三角形证明角相等或线段成比例,或进行角的度数和线段长度的计算等 〖考查重点与常见题型〗 1. 论证三角形相似,线段的倍分以及等积式,等比式,常以论证题型 或计算题型出现; 3. 寻找构成三角形相似的条件,在中考题中常以 选择题或填空题形式出现,如:下 列所述的四组图形中,是相似三角形的个数是( ) ① 有一个角是45°的两个等腰三角形;②两个全等三角形;③有一个角是100°的两个等腰三角形;④两个等边三角形。 (A )1个 (B )2个 (C )3个 (D )4个 〖预习练习〗 1. 点P 为△ABC 的AB 边上一点(AB >AC ),下列条件中不一定能保证△ACP ∽△ABC 的是( ) (A )∠ACP =∠B (B )∠APC =∠ACB (C )AC AB =AP AC (D )PC BC =AC AB 2.下列各组的两个图形,一定相似的是( ) (A ) 两条对角线分别对应成比例的两个平行四边形 (B ) 等腰梯形的中位线把它分成的两个等腰梯形 (C ) 有一个角对应相等的两个菱形 (D ) 对应边成比例的两个多边形 3. 如图,在△ABC 中,∠BAC =90°,AD ⊥BC ,垂足 为D ,DE ⊥BC ,垂足为E ,则图中与△ADE 相似的三角 A 形个数为( ) (A )1 (B )2 (C )3 (D )4 E 4. M 在AB 上,且MB =4,AB =12,AC =16, 在AC 上有一定N ,使△AMN 与原三角形相似,则AN 的长为 5. 如图,△ABC 中,DE ∥AC ,BD =10,DA =15, A BE =12,则EC = ,DE:AC = , D S △BDE :S 梯形ADEC = B E C 考点训练 1.以下条件为依据,能判定△ABC 和△A 1B 2C 3相似的一组是( ) (A) ∠A =45°,AB =12cm,AC =15cm, ∠A ′=45°,A ′B ′=16cm,A ′C ′=25cm (B) AB =12cm,BC =15cm,AC =24cm, A ′B ′=20cm,B ′C ′=25cm,A ′C ′=32cm (C)AB =2cm,BC =15cm, ∠B =36°, A ′B ′=4cm,B ′C ′=5cm, ∠A ′=36° (D) ∠A =68°,∠B =40°∠A ′=68°,∠B ′=40° 2.如图,△ABC 中DE,DF,EG 分别平行于BC,AC,AB, 图中与△ADG 相似的三角形共有( )个 A G D C F E B

相似三角形的存在性问题解题策略

中考数学压轴题解题策略(2) 相似三角形的存在性问题解题策略 《挑战压轴题·中考数学》的作者 上海 马学斌 专题攻略 相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等. 判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验,如例题1、2、3、4. 应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等,如例题6. 应用判定定理3解题不多见,如例题5,根据三边对应成比例列连比式解方程(组). 例题解析 例? 如图1-1,抛物线213482 y x x =-+与x 轴交于A 、B 两点(A 点在B 点左侧),与y 轴交于点C .动直线EF (EF //x 轴)从点C 开始,以每秒1个单位的速度沿y 轴负方向平移,且分别交y 轴、线段BC 于E 、F 两点,动点P 同时从点B 出发,在线段OB 上以每秒2个单位的速度向原点O 运动.是否存在t ,使得△BPF 与△ABC 相似.若存在,试求出t 的值;若不存在,请说明理由. 图1-1 【解析】△BPF 与△ABC 有公共角∠B ,那么我们梳理两个三角形中夹∠B 的两条边. △ABC 是确定的.由213482 y x x = -+,可得A (4, 0)、B (8, 0)、C (0, 4). 于是得到BA =4,BC =12CE CO EF OB ==. △BPF 中,BP =2t ,那么BF 的长用含t 的式子表示出来,问题就解决了. 在Rt △EFC 中,CE =t ,EF =2t ,所以CF . 因此)BF t ==-. 于是根据两边对应成比例,分两种情况列方程: ①当BA BP BC BF ==.解得43t =(如图1-2).

相似三角形教案

4.5 相似三角形 (一)教学重点: 相似三角形定义的理解和认识。 (二)教学难点: 1.相似三角形的定义所揭示的本质属性的理解和应用; 2.例2后想一想中“渗透三角形相似与平行的内在联系”是本节课的第二个难点。 (三)教法与学法分析: 本节课将借助生活实际和图形变换创设宽松的学习环境;并利用多媒体手段辅助教学,直观、形象,体现数学的趣味性。 学生则通过观察类比、动手实践、自主探索、合作交流的学习方式完成本节课的学习。 教学目标: 1知识与技能 (1). 掌握相似三角形的定义、表示法,并能根据定义判断两个三角形是否相似。 (2). 能根据相似比进行计算,训练学生判断能力及对数学定义的运用能力。 2 过程与方法 (1). 领会教学活动中的类比思想,提高学生学习数学的积极性。 (2). 经过本节的学习,培养学生通过类比得到新知识的能力,掌握相似三角形 的定义及表示法,会运用相似比解决相似三角形的边长问题。 3 情感态度与价值观 (1). 经历相似多边形有关概念的类比,渗透类比的数学思想,并领会特殊与 一般的关系。

(2). 深化对相似三角形定义的理解和认识.发展学生的想象能力,应用能力,建模意识,空间观念等,培养学生积极的情感和态度。 三、教学过程分析 第一环节 情景引入 归纳定义 活动内容:回顾与思考(教师展示课件并设问,学生观察类比、自主探索归纳相似三角形的定义) 1.上节课我们学习了相似多边形的定义及记法, 请同学们观察下列图形,并指出哪些图形相似?相似图形的对应边、对应角有什么关系? 2.请问相似三角形是相似多边形吗?请同学们回忆一下什么叫相似多边形? 3.那么由“相似多边形的定义”你能得出“相似三角形的定义”吗? 4.相似三角形的定义:三角对应相等、三边对应成比例的两个三角形叫做相似三角形(similar trangles ) . 如△ABC 与△DEF 相似,记作△ABC ∽△ DEF 第二环节:运用定义 解决问题 活动内容:想一想 议一议 例1 例2 A B C D E F

相似三角形存在性问题

因动点产生得相似三角形问题 例1 2015年上海市宝山区嘉定区中考模拟第24题 如图1,在平面直角坐标系中,双曲线(k≠0)与直线y=x+2都经过点A(2, m). (1)求k与m得值; (2)此双曲线又经过点B(n, 2),过点B得直线BC与直线y=x+2平行交y轴于点C,联结AB、AC,求△ABC得面积; (3)在(2)得条件下,设直线y=x+2与y轴交于点D,在射线CB上有一点E,如果以点A、C、E所组成得三角形与△ACD相似,且相似比不为1,求点E得坐标、 图1 动感体验 请打开几何画板文件名“15宝山嘉定24”,拖动点E在射线CB上运动,可以体验到, △ACE与△ACD相似,存在两种情况。 思路点拨 1、直线AD//BC,与坐标轴得夹角为45°. 2.求△ABC得面积,一般用割补法. 3。讨论△ACE与△ACD相似,先寻找一组等角,再根据对应边成比例分两种情况列方程. 满分解答 (1)将点A(2, m)代入y=x+2,得m=4.所以点A得坐标为(2,4). 将点A(2, 4)代入,得k=8。 (2)将点B(n, 2),代入,得n=4。 所以点B得坐标为(4, 2)、 设直线BC为y=x+b,代入点B(4, 2),得b=—2. 所以点C得坐标为(0,—2). 由A(2, 4) 、B(4, 2) 、C(0,-2),可知A、B两点间得水平距离 与竖直距离都就是2,B、C两点间得水平距离与竖直距离都就是4. 所以AB=,BC=,∠ABC=90°.

图2 所以S△ABC===8、 (3)由A(2, 4)、D(0, 2) 、C(0,—2),得AD=,AC=、 由于∠DAC+∠ACD=45°,∠ACE+∠ACD=45°,所以∠DAC=∠ACE。 所以△ACE与△ACD相似,分两种情况: ①如图3,当时,CE=AD=. 此时△ACD≌△CAE,相似比为1. ②如图4,当时,、解得CE=.此时C、E两点间得水平距离与竖直距离都就是10,所以E(10, 8)、 图3 图4 考点伸展 第(2)题我们在计算△ABC得面积时,恰好△ABC就是直角三角形、 一般情况下,在坐标平面内计算图形得面积,用割补法、 如图5,作△ABC得外接矩形HCNM,MN//y轴. 由S矩形HCNM=24,S△AHC=6,S△AMB=2,S△BCN=8,得S△ABC=8. 图5 例22014年武汉市中考第24题 如图1,Rt△ABC中,∠ACB=90°,AC=6 cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm得速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4 cm得速度向点B匀速运动,运动时间为t秒(0

沪教版相似三角形专题复习教案

相似三角形综合复习 一、基础知识 (一).比例 1.第四比例项、比例中项、比例线段; 2.比例性质: (1)基本性质: bc ad d c b a =?= ac b c b b a =?=2 (2)合比定理:d d c b b a d c b a ±= ±?= (3)等比定理:)0.(≠+++=++++++?==n d b b a n d b m c a n m d c b a 3.黄金分割:如图,若AB PB PA ?=2 ,则点P 为线段AB 的黄金分割点. 4.平行线分线段成比例定理 (二)相似 1.定义:我们把具有相同形状的图形称为相似形. 2.相似多边形的特性:相似多边的对应边成比例,对应角相等. 3.相似三角形的判定 ● (1)平行于三角形一边的直线与其它两边相交,所构成的三角形与原三角形相似。 ● (2)如果两个三角形的三组对应边的比相等,那么这两个三角形相似。 ● (3)如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。 ● (4)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。 4. 相似三角形的性质 ● (1)对应边的比相等,对应角相等. ● (2)相似三角形的周长比等于相似比. ● (3)相似三角形的面积比等于相似比的平方. ● (4)相似三角形的对应边上的高、中线、角平分线的比等于相似比. 5.三角形中位线定义: 连接三角形两边中点的线段 叫做三角形的中位线. 三角形中位线性质: 三角形的中位线平行于第三边,并且等于它的一半。 6.梯形的中位线定义:梯形两腰中点连线叫做梯形的中位线. 梯形的中位线性质: 梯形的中位线平行于两底并且等于两底和的一半. 7.相似三角形的应用: 1、利用三角形相似,可证明角相等;线段成比例(或等积式); 2、利用三角形相似,求线段的长等 3、利用三角形相似,可以解决一些不能直接测量的物体的长度。如求河的宽度、求建筑物的高度等。 (三)位似: 位似:如果两个图形不仅是相似图形,而且是每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形。这个点叫做位似中心.这时的相似比又称为位似比. 位似性质:位似图形上任意一对对应点到位似中心的距离之比等于位似比 B A P

人教版数学九年级下册教案:相似三角形

相似三角形 教学目标:使学生掌握相似三角形的判定与性质 教学重点:相似三角形的判定与性质 教学过程: 一 知识要点: 1、相似形、成比例线段、黄金分割 相似形:形状相同、大小不一定相同的图形。特例:全等形。 相似形的识别:对应边成比例,对应角相等。 成比例线段(简称比例线段):对于四条线段a 、b 、c 、d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即(或a :b=c :d ),那么,这四条线段叫做成比例线段,简称比例线段。 黄金分割:将一条线段分割成大小两条线段,若小段与大段的长度之比等于大段与全长之比,则可得出这一比值等于0·618…。这种分割称为黄金分割,点P 叫做线段AB 的黄金分割点,较长线段叫做较短线段与全线段的比例中项。 例1:(1)放大镜下的图形和原来的图形相似吗? (2)哈哈镜中的形象与你本人相似吗? (3)你能举出生活中的一些相似形的例子吗/ 例2:判断下列各组长度的线段是否成比例: (1)2厘米,3厘米,4厘米,1厘米 (2)1·5厘米,2·5厘米,4·5厘米,6·5厘米 (3)1·1厘米,2·2厘米,3·3厘米,4·4厘米 (4)1厘米, 2厘米,2厘米,4厘米。 例3:某人下身长90厘米,上身长70厘米,要使整个人看上去成黄金分割,需穿多高的高跟鞋? 例4:等腰三角形都相似吗? 矩形都相似吗? 正方形都相似吗? 2、相似形三角形的判断: a 两角对应相等 b 两边对应成比例且夹角相等 c 三边对应成比例 3、相似形三角形的性质: a 对应角相等 b 对应边成比例 d c b a

c 对应线段之比等于相似比 d 周长之比等于相似比 e 面积之比等于相似比的平方 4、相似形三角形的应用: 计算那些不能直接测量的物体的高度或宽度以及等份线段 例题 1:如图所示, ABCD 中,G 是BC 延长线上一点,AG 交BD 于点E ,交DC 于点F ,试找出图中所有的相似三角形 2如图在正方形网格上有6个斜三角形:a :ABC ; b: BCD c: BDE d: BFG e: FGH f: EFK ,试找出与三角形a 相似的三角形 3、在 中,AB=8厘米,BC=16厘米,点P 从点A 开始沿AB 边向点B 以2厘米每秒的速度移动,点Q 从点B 开始沿BC 向点C 以4厘米每秒的速度移动,如果P 、Q 分别从A 、B 同时出发,经几秒钟 PBQ 与 ABC 相似? 4、某房地产公司要在一块矩形ABCD 土地上规划建设一个矩形GHCK 小区公园(如图),为了使文物保护区 AEF 不被破坏,矩形公园的顶点G 不能在文物保护区内。已知AB=200米,AD=160米,AF=40米,AE=60米。 (1)当矩形小区公园的顶点G 恰是EF 的中点时,求公园的面积; (2)当G 是EF 上什么位置时,公园面积最大? A N E B C K D F M G H B C G D F E A

人教版数学九年级下册27.2.1《相似三角形的判定(2)》教案设计

课相似三角形判定(2) 教学目标(1)初步掌握两个三角形相似的四个判定方法. (2)能够运用三角形相似的条件解决简单的问题. (3)在探索三角形相似的判定方法过程中,培养学生与他人交流、合作的意识和品质. 教学 重点 掌握判定方法,会运用判定方法判定两个三角形相似。 教学难点(1)三角形相似的条件归纳、证明; (2)会准确的运用两个三角形相似的条件来判定三角形是否相似. 教学步骤、内容一.创设情境 活动1 教师活动:复习提问: (1) 两个三角形全等有哪些判定方法?SSS SAS ASA AAS (2) 我们学习过哪些判定三角形相似的方法?定义、(预备定理)平行于三角形一边的直线和其他两边相交,所成的三角形与原来三角形相似。 (3) 相似三角形与全等三角形有怎样的关系?相似比k=1时,两个相似三角形全等 活动2 提出探讨问题:1、如图,如果要判定△ABC与△ A’B’C’相似,是不是一定需要一一验证所有的对应 角和对应边的关系? 2、可否用类似于判定三角形全等的SSS方法,能否通过一个三角形的三条边与另一个三角形的三条边对应的比相等,来判定两个三角形相似呢? 3、(教材P42页探究2) 任意画一个三角形,再画一个三角形,使它的各边长都是原来三角形各边长的k倍,度量这两个三角形的对应角,它们相等吗?这两个三角形相似吗?与同学交流一下,看看是否有同样的结论。 教师活动:带领学生画图探究并取k=1.5; 学生活动:学生细心观察思考,小组讨论后回答问题 教师活动:(1)提出问题:怎样证明这个命题是正确的呢? (2)教师带领学生探求证明方法.(已知、求证、证明) B'C' A' A B C

相关文档
最新文档