1图像模式识别的方法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1图像模式识别的方法

图像模式识别的方法很多,从图像模式识别提取的特征对象来看,图像识别方法可分为以下几种:基于形状特征的识别技术、基于色彩特征的识别技术以及基于纹理特征的识别技术。其中,基于形状特征的识别方法,其关键是找到图像中对象形状及对此进行描述,形成可视特征矢量,以完成不同图像的分类,常用来表示形状的变量有形状的周长、面积、圆形度、离心率等。基于色彩特征的识别技术主要针对彩色图像,通过色彩直方图具有的简单且随图像的大小、旋转变换不敏感等特点进行分类识别。基于纹理特征的识别方法是通过对图像中非常具有结构规律的特征加以分析或者则是对图像中的色彩强度的分布信息进行统计来完成。

从模式特征选择及判别决策方法的不同可将图像模式识别方法大致归纳为两类:统计模式(决策理论)识别方法和句法(结构)模式识别方法。此外,近些年随着对模式识别技术研究的进一步深入,模糊模式识别方法和神经网络模式识别方法也开始得到广泛的应用。在此将这四种方法进行一下说明。

2.1.1句法模式识别

对于较复杂的模式,如采用统计模式识别的方法,所面临的一个困难就是特征提取的问题,它所要求的特征量十分巨大,要把某一个复杂模式准确分类很困难,从而很自然地就想到这样的一种设计,即努力地把一个复杂模式分化为若干较简单子模式的组合,而子模式又分为若干基元,通过对基元的识别,进而识别子模式,最终识别该复杂模式。正如英文句子由一些短语,短语又由单词,单词又由字母构成一样。用一组模式基元和它们的组成来描述模式的结构的语言,称为模式描述语言。支配基元组成模式的规则称为文法。当每个基元被识别后,利用句法分析就可以作出整个的模式识别。即以这个句子是否符合某特定文法,以判别它是否属于某一类别。这就是句法模式识别的基本思想。

句法模式识别系统主要由预处理、基元提取、句法分析和文法推断等几部分组成。由预处理分割的模式,经基元提取形成描述模式的基元串(即字符串)。句法分析根据文法推理所推断的文法,判决有序字符串所描述的模式类别,得到判决结果。问题在于句法分析所依据的文法。不同的模式类对应着不同的文法,描述不同的目标。为了得到于模式类相适应的文法,类似于统计模式识别的训练

过程,必须事先采集足够多的训练模式样本,经基元提取,把相应的文法推断出来。实际应用还有一定的困难。

2.1.2统计模式识别

统计模式识别是目前最成熟也是应用最广泛的方法,它主要利用贝叶斯决策规则解决最优分类器问题。统计决策理论的基本思想就是在不同的模式类中建立一个决策边界,利用决策函数把一个给定的模式归入相应的模式类中。统计模式识别的基本模型如图2,该模型主要包括两种操作模型:训练和分类,其中训练主要利用己有样本完成对决策边界的划分,并采取了一定的学习机制以保证基于样本的划分是最优的;而分类主要对输入的模式利用其特征和训练得来的决策函数而把模式划分到相应模式类中。

统计模式识别方法以数学上的决策理论为基础建立统计模式识别模型。其基本模型是:对被研究图像进行大量统计分析,找出规律性的认识,并选取出反映图像本质的特征进行分类识别。统计模式识别系统可分为两种运行模式:训练和分类。训练模式中,预处理模块负责将感兴趣的特征从背景中分割出来、去除噪声以及进行其它操作;特征选取模块主要负责找到合适的特征来表示输入模式;分类器负责训练分割特征空间。在分类模式中,被训练好的分类器将输入模式根据测量的特征分配到某个指定的类。统计模式识别组成如图2所示。

图2 统计模式识别模型

2.1.2.1几种统计模式识别的方法

统计模式识别根据采用方法的不同可以进行多种形式的分类:通过贝叶斯决策理论对条件密度已知的样本进行分类;对于类条件密度不明的情况,可根据训练样本的类别是否己知将分类问题分为监督学习和非监督学习两大类;监督学习

和非监督学习又可根据是否通过参数决策分为参数估计和非参数估计。统计模式识别的另一种分类方法是根据决策界是否直接得到将其分为几何方法和基于概率密度的方法。几何方法经常直接从优化一定的代价函数构造决策界;而基于概率密度的方法要首先估计密度函数然后构造分类函数指定决策界。

1、几何分类法

1) 模板匹配法

它是模式识别中的一个最原始、最基本的方法,它将待识模式分别与各标准模板进行匹配,若某一模板与待识模式的绝大多数单元均相匹配,则称该模板与待识模式“匹配得好”,反之则称“匹配得不好”,并取匹配最好的作为识别结果。

2)距离分类法

距离是一种重要的相似性度量,通常认为空间中两点距离越近,表示实际上两样本越相似。大约有十余种作为相似性度量的距离函数,其中使用最广泛的是欧氏距离。它是使用最为广泛的方法,常用的有平均样本法、平均距离法、最近邻法和K-近邻法。

3)线性判别函数

和上述的方法不同,判决函数法是以判决边界的函数形式的假定为其特性的,而上述的方法都是以所考虑的分布的假定为其特性的。假如我们有理由相信一个线性判决边界取成:

d d x w x w x w x g +++= 2211)(

是合适的话,那么剩下的问题就是要确定它的权系数。权系数可通过感知器算法或最小平方误差算法来实现。但作为一条规则,应用此方法必须注意两点;第一就是方法的可适性问题,第二就是应用判决函数后的误差准则。

4)非线性判别函数

线性判决函数的特点是简单易行,实际应用中许多问题往往是非线性的,一种处理的办法将非线性函数转换为线性判决函数,所以又称为广义线性判决函数。另一种方法借助电场的概念,引入非线性的势函数,它经过训练后即可用来解决模式的分类问题。

2 概率分类法

几何分类法是以模式类几何可分为前提条件的,在某些分类问题中这种条件能得到满足,但这种条件并不经常能得到满足,模式的分布常常不是几何可分的,即在同一区域中可能出现不同的模式,这时,必须借助概率统计这一数学工具。可以说,概率分类法的基石是贝叶斯决策理论。

设有R 类样本,分别为w1, w2 , … , wR,若每类的先验概率为P(wii), i = 1,2 ,3,…R,对于一随机矢量X,每类的条件概率为(又称类概率密度)P(X/Wii),则根据Bayes 公式,后验概率为:

∑==R i i

i i i i w p w X p w p w X p X w p 1)()|()

()|()|(

从后验概率出发,有Bayes 法则:

i

j R j i w X X w p j j i ≠∀=∈=;且,,,,,其中则若 21)],|(max[ arg

2.1.2.2朴素贝叶斯分类器 朴素贝叶斯分类是一种十分简单的分类算法,叫它朴素贝叶斯分类是因为这种方法的思想真的很朴素,朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,哪个最大,就认为此待分类项属于哪个类别。通俗来说,就好比这么个道理,你在街上看到一个黑人,我问你你猜这哥们哪里来的,你十有八九猜非洲。为什么呢?因为黑人中非洲人的比率最高,当然人家也可能是美洲人或亚洲人,但在没有其它可用信息下,我们会选择条件概率最大的类别,这就是朴素贝叶斯的思想基础。

朴素贝叶斯分类的工作过程如下:

(1)每个数据样本用一个n 维特征向量{}n x x x X ,...,21=表示,分别描述对n 个属性A 1,A 2,…A n 样本的n 个度量。

(2)假定有m 个类C 1,C 2,…C m 。给定一个未知的数据样本X (即没有类标号),分类法将预测

X 属于具有最高后验概率(条件

X 下)的类。即是说,朴素贝叶斯分类将未知的样本分配给类C i ,当且仅当

()()i j m j X C P X C P j i ≠≤≤>,1,

相关文档
最新文档