150m中承式箱肋拱桥计算报告730

150m中承式箱肋拱桥计算报告730
150m中承式箱肋拱桥计算报告730

第一章概述

主桥采用单孔150m中承式箱肋拱桥,矢跨比为1/4,拱轴线形为悬链线,拱轴系数m=1.347。桥面全宽12.5m。主拱圈为钢管混凝土劲性骨架箱肋拱,截面形式为单箱室双肋,分别设置在桥面两侧,全桥设一字型横撑三道,K字型横撑二道,箱高2.5m。骨架采用φ325×12mm的16锰无缝钢管作主骨架、组合角钢、槽钢及φ168×5mm的钢管作为腹杆、联结系杆件。

吊杆处横梁为预应力混凝土梁,其外形尺寸为100×120mm的矩形;与桥面系相交叉处及设置立柱处的横撑均为钢筋混凝土矩形梁;墩柱上的帽梁,采用钢筋混凝土矩形梁。

吊杆采用带有PE管防护的37φs15.2mm的柔性拉杆,两端采用OVM锚具PWS-37固定于箱顶面及横梁底。

车行道板采用预制预应力混凝土矩形空心板梁。

主桥拱座采用钢筋混凝土柱桩与基岩连接,横向连为整体,基础采用明挖后成孔,形成桩基。

1.1咨询依据

(1)《S207线安康堰吉河大桥改建工程两阶段施工图设计》文件;

(2)《S207线安康堰吉河大桥改建工程两阶段施工图设计预算》文件;

(3)国家和交通部颁布的现行“强制性条文”、“技术标准”、“规范”、“规程”

及“设计文件编制办法”等。

1.2主要设计规范

(1)部颁《公路工程技术标准》(JTG B01-2003)

(2)部颁《公路工程抗震设计规范》(JTJ 004-89)

(3)部颁《公路桥涵设计通用规范》(JTG D60-2004)

(4)部颁《公路圬工桥涵设计规范》(JTG D61-2005)

(5)部颁《公路钢筋砼及预应力砼桥涵设计规范》(JTG D62-2004)

(6)部颁《公路桥涵地基与基础设计规范》(JTJ 024-85)

(7)部颁《公路工程基本建设项目设计文件编制办法》(1996年)

(8)部颁《公路桥涵施工技术规范》(JTJ 041-2000)

(9)部颁《钢筋机械连接通用技术规程》(JGJ 107-96)

(10)《公路工程质量评定标准》(JTG F80/1-2004)

(11)《公路桥梁抗风设计规范》(JTG/T D60-01-2004)

(12)《预应力混凝土用钢绞线》(GB/T5224)

(13)《钢筋等强直螺纹连接技术规程》(Q/JY 08-1997)

(14)《公路工程结构可靠度设计统一标准》(GB/T50283-1999)

(15)《工程建设标准强制性条文》

(16)《钢管混凝土结构设计与施工规程》(CECS28:90)

(17)《钢结构工程施工及验收规范》(GB 50205-2001)

(18)《钢结构设计规范》(GB 50017-2003)

(19)《桥梁用结构钢》(GB/T 714-2000)

(20)《低合金高强度结构钢》(GB/T 1591-94)

(21)《建筑结构钢结构焊接规程》(JGJ 81-91)

(22)《钢结构、管道涂装技术规程》(YB/T 9256-96)

1.3总体评价及主要结论

本施工图设计遵照2006年6月初步设计评审会上确定的一孔150m中承式劲性骨架钢筋混凝土箱肋拱桥方案,作了深入、细致的工作。该文件基本齐全,设计内容和深度符合交通部《公路工程基本建设项目设计文件编制办法》及图表示例的要求,图纸调整完善后可交付施工。

第二章图纸审查

2.1说明部分

(1)设计标准中“新桥行车宽度为净9.0+2×1.5米”,建议取消“行车”二字。(2)瀛湖设计水位329.37m,是否满足特大桥300年一遇洪水要求,同时与桥梁总体布置图所示设计水位330.0米不一致,请核查。

(3)“全桥设工字形横撑三道”,与后面所提“一字”横撑相矛盾,请改正。(4)结构分析计算要点中施工阶段验算按裸管形成两铰拱即浇管内砼,和施工步骤示意图中的说明不一致,应予以统一;从保证施工安全与质量的角

度来看,裸管形成无铰拱再浇筑管内砼比较合理。

(5)施工方法中宜将浇筑管内砼与浇筑外包砼的说明分开,同时对浇注管内砼的工艺说明欠详细,请予以补充;管内砼存在空洞,钻孔填补砼不太现实,应压入低收缩砼砂浆。

2.2图纸部分

(1)总体布置图中拱肋净间距为12.0米,而靠安康侧,桥梁标准宽度12.5米,在拱肋与桥面相交处,将发生干扰,护栏栏杆等无法实现安装,请核查。

Ⅱ-Ⅱ断面中所示横坡为1.5%的双向坡,与路线纵断面中提供的横坡2%不同,且6~11cmC40砼整体化层形成的横坡也不是1.5%,请核查。(2)拱肋一般构造Ⅲ—Ⅲ断面中,肋腹板变化尺寸25cm所示位置有误,应和腹板尺寸相对应。

(3)拱肋钢筋构造

①建议将角隅加强钢筋N12适当增长。

②建议将N10号钢筋延长与N8或N8’连接。

③建议将7号钢筋间距20cm减小,以不超过10d为控制间距,以利抗裂。

④建议将横隔板钢筋间距20cm减小,不超过15cm为宜。

(4)建议将拱肋间横撑拱肋一字横撑加强,由2根钢管改为4根钢管;在横撑普通钢筋构造图中,建议两竖向钢筋间增补一些架立定位短钢筋。

(5)吊杆构造

①吊杆既要满足受力要求,又要考虑养护方便及后期更换的需要,图中吊杆设计顶部采用环氧树脂及防水混凝土进行防护,这种措施不利于后期吊杆的更换,建议采用注入防腐油脂的方案对锚头部分进行防护。

②在横梁顶面采用12.5号水泥砂浆隔水不太可靠,建议将下导管伸出横梁顶面3~4cm,周围焊一钢制垫板以防止雨水进入吊杆下锚固区域,同时应补充下锚头部分的防护图纸。

③根据近年来的工程实际,短吊杆的受力较长吊杆复杂,容易引起疲劳破损,故建议将第3~4、第20~21吊杆改为中间设铰的吊杆,即在横梁顶面设铰,下设拉杆,以适应桥面伸缩变形,延长吊杆使用寿命。

(6)吊杆横梁构造

①两吊杆中心间距1360cm,整个横梁尺寸应为1460cm,图中又给出1475cm,前后矛盾,请核查。且钢束布置图中各部分尺寸也与横梁一般构造中的尺寸不符,请核查。

②尽管横梁布设预应力钢筋,横梁受力主钢筋直径全部采用Φ12,建议将受力主钢筋由Φ12改为Φ20,以策安全。

③对吊杆横梁预应力钢筋,应给出张拉控制力及各钢束引伸量,以利施工控制。

(7)肋间横梁

①1#、2#及22#、23#肋间普通钢筋进入拱肋内40cm,锚固长度不满足规范要求,请予以调整。

②N5钢筋90°弯折40cm,应给出“R-40”字样。

③1#、23#肋间横梁跨中主筋布置似有误,请予以核算、调整。

④请增加横梁及盖梁两端的挡块钢筋构造图。

(8)桥面预制板

①每块板布设了9根钢筋绞线,在板端未见失效长度,端部容易开裂。请核查是否采用失效措施。

②按说明伸缩缝之间沿纵向要形成吊杆横梁,预制板及整体化层完全固接,而板端并未预留现浇接头,怎么形成连续,请核查。

③桥面连续及调平层钢筋布置图中4~20#横梁上未设置支座,梁板支承处

底面及横梁相接触面容易拉裂,建议布置柔性垫层。

④建议在横梁顶面支承线处设置锚筋,在空心板预制时增加预留孔,限制其纵向位移,防止施工中发生落梁事故。

⑤泄水管的设置应避开吊杆锚头位置,同时还应考虑桥面的下部分拱肋不被水流侵蚀,建议补充详细位置图。

⑥在“T”梁有堆放场地的前提下,建议桥面板改为“T”型梁,以减轻桥面自重。

(9)1#及23#墩柱构造

①建议将立柱移到拱肋上,或将立柱直接支撑在拱座基础上,盖梁考虑布设预应力钢筋。

②现盖梁长度12.50m,扣除挡块厚度50cm,与预制板底宽相同,应考虑预留3-5cm,作为施工安装宽度。

③22#柱,柱径100cm,对跨径仅6.7m板桥偏大,建议进行调整。

④柱中主筋采用Φ20,进入肋间横梁的长度不满足规范40d要求。(10)拱座及桥台

①台帽钢筋构造图Ⅰ-Ⅰ断面中,50cm厚前墙钢筋间距太大,建议顶、底面各增加一根钢筋。

②拱座一般构造中应示出桩底、承台、起拱线设计桩高,以利施工。

③拱座砼体积较大,建议在保证拱座基础有足够安全储备的前提下对其进行调整,可结合桥台进行设计,取消中间多余砼,或部分采用片石混凝土,以降低工程造价。拱座基桩直径偏小,建议适当加大,对拱座开挖后基础的回填材料及技术要求应提出说明。

④建议补充浇筑大体积砼时消除水化热的具体措施。

⑤桥台除前墙外,其余各部分可采用片石砼,可结合拱座基础设计进行调整。

⑥桥台桩基钢筋构造图断面Ⅰ-Ⅰ中,桩基直径180cm有误。

(11)由于是二级公路,建议U台两侧增设搭板。

2.3预算部分

本预算编制依据基本符合交通部有关编制办法及陕西省交通厅的有关规定,定额选用基本合理,编制过程完整,没有大的错、漏、缺。预算文件编制的比较细致。

经复核,各部分预算主要有以下问题待核实:

(1)个别采用的编制依据不妥:

①陕交建(96)406号(编制说明中误写为046号)已经废止。

②陕价电调发[2000]88号文应按陕西物价局陕价管发[2004]30号文件执行。

(2)费率表(04表)中的工地转移里程应按陕交建[2000]475号文执行。(3)费率表(04表)中,由于旧桥在施工中仍利用,行车干扰次数取用101~500辆车次系数太大,可根据实际情况,适当调整。

(4)材料单价应取用陕西2007年第二季度价格。

(5)分项工程计算表(08表)中的有关问题:

①拱座工程数量有误,请核查、修改。

②拱肋混凝土采用交通部06年征求意见稿,后面多项也均如此,是合适的,但定额中混凝土标号与设计不同,应调整。

③拱肋混凝土中列有钢管136.06t,但型钢43.50t漏计。

④纵、横梁(含横隔板及横撑)混凝土标号与设计不同,应调整;纵、横梁的钢筋少计19.66t。

⑤钢管拱肋安装20.248t的数量如何得来,请核查。

⑥吊杆安装中,定额中的铸铁材料,应按设计调整为铸钢材料。

⑦运输索道及主索地锚两项漏列,请补充。

⑧预制预应力空心板工程量多计31.76m 3,请核查。

⑨桥面板钢绞线也应按交通部征求意见稿中的定额计列为妥。

第三章结构静力计算分析

采用空间结构分析程序对堰吉河大桥进行计算分析,按照施工过程建模。由于《S207线安康堰吉河大桥改建工程两阶段施工图设计》(第一册共一册)图纸中的设计说明采用的施工顺序为:裸钢管首先形成两铰拱,等浇注完主拱圈底板混凝土后,再封拱脚,形成无铰拱,浇注腹板、顶板砼成拱。而施工步骤示意图中提供的顺序为:裸钢管形成无铰拱,然后浇注钢管砼,浇注拱肋底板、腹板、顶板砼成拱。由于两种顺序矛盾,且何种阶段形成无铰拱,对施工阶段的钢管、管内砼及拱圈的稳定性都有较大的影响,因此本次验算分析对上述两种过程的施工阶段均进行了建模计算,对两种施工方法的应力及稳定进行了对比。

3.1计算参数取值

3.1.1 材料取值

钢管:弹性模量E=2.06?1011Pa,容重Dens=7.85×103kg/m3,泊松比ν=0.3,温度线膨胀系数1.2×10-5。

吊杆:弹性模量E=1.95?1011Pa,容重Dens=7.85×103kg/m3,泊松比ν=0.3,温度线膨胀系数1.2×10-5。

混凝土:弹性模量根据不同标号确定,容重Dens=2.6×103kg /m3,泊松比ν=0.2,温度线膨胀系数1.0×10-5。

3.1.2 主要技术标准和设计基础资料

(1)公路等级:二级公路

(2)设计荷载:公路-Ⅱ级,人群荷载3.5KN/m2

(3)设计行车速度:主线40N/h

(4)桥面宽度:主线双向双车道,桥面总宽12.5m

(5)桥梁跨径组成: 1×150m中承式钢管混凝土劲性骨架(SRC结构)箱肋拱桥

(6)桥面横坡: 1.5%

(7)桥面铺装:沥青混凝土厚8cm和混凝土厚10cm

(8)桥位气温:年平均14.3℃;平均最高38℃;平均最低-10℃

(9)设计库区控制水位标高: 325.00m

(10)地震动峰值加速度: 0.05g;特征周期:0.25s

(11)基本风速: 10年一遇22.5m/s;100年一遇29.0m/s

(12)设计洪水频率1/300。

3.2施工阶段计算分析

3.2.1 裸钢管成型无铰拱

按设计图中施工步骤示意图提供的施工顺序:裸钢管形成无铰拱,然后浇注钢管砼,浇注拱肋底板、腹板、顶板砼成拱,进行建模计算。

(1)模型建立

采用空间有限元分析程序进行建模,拱肋按梁单元模拟,吊杆采用只受拉桁架单元模拟,桥面板通过梁格法进行模拟。整个模型共有单元4824个,节点2295个,如图3-1所示。

图3-1 有限元整体计算模型

整个施工过程共划分为15个施工阶段,具体如表3-1所示。

表3-1 施工阶段划分表

(2)拱肋施工阶段构件应力计算结果汇总

施工阶段拱肋各主要控制截面的应力计算结果如表3-2所示。

表3-2 施工阶段计算结果汇总表单位:MPa

(注:表中所示应力以拉为正,压为负。)

各个施工阶段拱肋各主要控制截面的应力,以第1阶段为例如图所示。

图3-2 第1阶段上弦拱肋上缘应力 图3-3 第1阶段下弦拱肋下缘应力 钢管、管内混凝土及外包砼在各个施工阶段的应力趋势见下图所示。

图3-4 钢管在各个施工阶段的应力趋势图

图3-5 钢管内灌注砼在各个施工阶段的应力趋势图

图3-6 外包底板下缘混凝土在各个施工阶段的应力趋势图

图3-7 外包顶板上缘混凝土在各个施工阶段的应力趋势图

(3)施工阶段结构稳定性分析

结合该桥的结构特点及施工特点,根据施工步骤示意图中提供的施工方法对裸拱状态及成桥运营状态的结构稳定性进行分析,结果如表3-3所示。

表3-3 主拱施工阶段稳定系数表

图3-8 施工阶段1 (K=12.95) 图3-9 施工阶段2 (K=6.78) 图3-10 施工阶段4 (K=9.58) 图3-11 施工阶段6 (K=9.54)

图3-12 施工阶段8 (K=9.55) 图3-13 施工阶段10 (K=10.22)

图3-14 施工阶段11 (K=10.96) 图3-15 施工阶段12 (K=12.04)

图3-16 施工阶段13 (K=12.69) 图3-17 施工阶段15 (K=8.16) 3.2.2 裸钢管成型两铰拱

按设计图中图纸说明提供的施工顺序:裸钢管形成为两铰拱,在浇注主拱圈底板混凝土,并封拱脚后,形成无铰拱,再浇注腹板、顶板混凝土成拱。计算分析情况如下。

(1)模型建立

采用空间有限元分析程序进行建模,三维空间梁单元采用来模拟,吊杆采用空间杆单元来模拟,行车道板采用板单元。整个模型共有梁单元3784个,节点2214个,如图所示。

图3-18 有限元整体计算模型

整个施工过程共划分为7个施工阶段,具体如表3-4所示。

(2)拱肋施工阶段构件应力计算结果汇总

施工阶段拱肋各主要控制截面的应力计算结果如表3-5所示。

(注:表中所示应力以拉为正,压为负。)

各个施工阶段拱肋各主要控制截面的应力,以第1阶段为例如图所示。

图3-19 第1阶段上弦拱肋上缘应力图3-20 第1阶段下弦拱肋下缘应力钢管及混凝土在各个施工阶段的应力趋势见下图所示。

图3-21 钢管在各个施工阶段的应力趋势图

图3-22 钢管内灌注砼在各个施工阶段的应力趋势图

图3-23 外包底板下缘混凝土在各个施工阶段的应力趋势图

图3-24 外包顶板上缘混凝土在各个施工阶段的应力趋势图(3)施工阶段结构稳定性分析

结合该桥的结构特点及施工特点,根据图纸说明中提供的施工顺序对裸拱状态及成桥运营状态的结构稳定性进行分析,结果如表3-6所示。

3.2.3 施工阶段计算结论

本次计算对施工图中提到的两种施工顺序均进行了模拟,两种施工顺序对成桥箱肋砼的受力影响不大,但在施工阶段,若按两铰拱计算,施工阶段稳定性较差,成桥阶段拱脚弯矩较小;按无铰拱计算,施工阶段稳定性较好,拱肋应力亦能满足设计要求,因此建议施工顺序按照施工步骤示意图中提供的方法执行,钢管成型无铰拱,然后灌注砼。

3.3运营阶段计算分析

按照裸拱成型无铰拱的施工方法,对桥梁的运营阶段进行了计算分析。3.3.1 荷载组合

成桥运营阶段共计算了下述几种荷载组合:

组合1:支座水平位移+恒载+收缩徐变;

组合2:支座水平位移+恒载+收缩徐变+汽车荷载+人群荷载;

组合3:支座水平位移+恒载+收缩徐变+汽车荷载+人群荷载+整体升温;

组合4:支座水平位移+恒载+收缩徐变+汽车荷载+人群荷载+整体降温。3.3.2 承载能力极限状态验算

构件按极限状态设计的原则是:荷载效应最不利组合的设计值小于或等于结

构抗力效应的设计值。即:γ

0S ≤ R(f

d

, a

d

)。

经验算,拱肋各控制截面在最不利荷载组合下强度满足要求,见表3-7。

3.3.3 正常使用极限状态验算

对该桥拱肋在拱脚、拱顶等9个控制截面按照作用短期荷载效应组合,各截面应力见以下图表所示。

表3-7 拱肋各控制截面强度验算汇总表

图3-25组合Ⅰ拱肋上缘混凝土应力 图3-26组合Ⅰ拱肋下缘混凝土应力

图3-27组合Ⅳ拱肋上缘混凝土应力 图3-28组合Ⅳ拱肋下缘混凝土应力

拱桥拱肋现浇工程施工方案比选

拱桥拱肋现浇施工方案比选 一、概述 重庆合川双龙湖大桥位于合川至武胜公路上,为四肋空腹式钢筋混凝土拱桥。全桥为三个连续等跨拱组成,全长159.6m,宽13.2m,单向纵坡2%,正拱斜置。拱肋设计净跨径40m,计算跨径40.6487m,净矢高8m,计算矢高8.1280m,矢跨比1/5,拱肋主体为0.75m×0.95m,拱脚处高1.1m,在3米范围内平滑过渡到标准截面,拱轴系数2.24,拱肋间9条0.45m×0.60m 横系梁连接。设计荷载为汽车-20级,挂车-100。拱肋主体形式见图一。 现拟就该桥关键工序——拱肋施工中的拱架施工、拱肋现浇的方案比选等作一一介绍,仅供参考、指正。 二、拱架型式的选择 (一) 拱架选择: 根据施工现场和项目部实际情况,初步选定满樘木拱架(即支柱式木拱架)、三铰钢桁式拱架和撑架式拱架的三种型式,其优缺点见表1。 表一:各型拱架优缺点对照表 拱架型式优点缺点 满樘 木拱架 1.安装、拆卸方便。 2.无需大型起吊设备。 3.施工精度易控制。 4.结构简单、稳定性好。 5.对桥墩、台水平分力小。 1.净空越高时,木材需要量越大,且木材回收率低。2.只适应于河滩和流速小、不受洪水危胁、不通航的河道。 3.节点多,制作安装用工多,引起拱架变形因素多。 三铰 钢桁式 拱架 1.拱架脚受力于桥墩(台),不受净空、桥下基础状况及水流限制。 2.拱架桁片为标准型,根据现场情况拼装,可周转使用。 3.承受荷载能力大,受力结构简单。 1.需缆索吊装设备安装,存在一定的吊装难度。2.拱架材料一次性投入高,若租用,租金较贵。 3.纵向静定结构,横向抗倾覆能力较差。 4.对桥墩、台的水平分力较大。 撑架式 拱架 1.对桥墩水平分力小。 2.净空越高,较满樘式拱架越省材料。 3.对桥下水流、通航限制条件较小。 1.需进行撑架基础处理,费用较高。 2.稳定性较差。 3.材料需要量较高,搭设所需时间较长。 而本工程的实际情况为: 1.第一、第二跨净空较高(最大达30米),桥下主要为淤泥和耕植土,且在第二跨有一水库泄洪河道,水流流量、水位不稳定。 2.第三跨桥下净空较低,桥下为亚粘土土质,偶见石块,稳定性较好。

上承式钢筋混凝土箱肋拱桥拱肋施工工艺

箱肋拱桥施工工艺 一、工程概况: 大桥主桥部分(即37#墩至48#)上部结构为箱拱肋施工。主桥主跨(40#墩至43#墩)为94m箱肋拱。拱轴系数为1.543,净矢跨比为1/6,主拱圈由八个等截面高1.8m、宽1.5m的单箱组合成四条分离式拱肋,半幅桥的两肋之间由横系梁连接,拱肋采用三段预制安装,最大吊重620kN。主桥边跨(除主跨以外)共8跨均为70m箱肋拱,拱轴系数为1.543,静矢跨比为1/7,最大吊重480kN。主拱圈由八个等截面高1.5m、宽1.5m的单箱组合成四组分离式拱肋,半幅桥的两肋之间由横系梁连接,拱肋采用三段预制安装。 主桥上部结构箱肋拱的预制分东、西两岸同时预制,其中东岸梁场负责预制三个主跨(40#墩至43#墩)及三个边跨(37#至40#墩)的箱肋拱,共布置六个预制台座,三个为主跨(94m跨)预制台座,三个为边跨(70m跨)预制台座,东岸梁场共需预制144段箱肋拱圈。西岸梁场负责五个边跨(43#墩至48#墩)箱肋拱的预制,共布置六个台座,需预制120段箱肋拱圈。 二、编制依据: 1.大桥招标文件;

2.施工组织设计; 3.《施工图设计》 4.《公路桥涵施工技术规范》JTJ041-89; 5.《公路工程质量检验评定标》JTJ071-98; 三、施工材料 箱肋拱施工材料主要包括钢材及混凝土两大类。钢材分Ⅰ级钢筋、Ⅱ级钢筋及A 钢板和少量预埋型钢,其中Ⅱ级钢筋用量最多。 3 混凝土材料包括水泥、粗细骨料,外加剂及拌合用水,全桥各跨箱肋拱混凝土设计标号均为C40。所有上述施工材料均应由物资部门统一备料,要做到备料充分及时,而且要保质保量,所有进场材料均应由试验、检测人员按照规定分批抽检合格后方可投入施工,发现不合格产品应坚决不予使用,以确保箱肋拱预制的内在质量。 1.水泥 ①水泥采用株洲水泥厂生产的525#水泥,水泥应符合国家现行标准,并附有株洲水泥厂的水泥品质试验报告等合格证明文件。 ②水泥进场后应分批进行检查验收,检验合格后方可投入使用。 ③水泥在运输和存放时,应防止受潮,不同出厂日期的水泥应分别存放,水泥如受潮或存放时间超过3个月,应重新做试验,若检验结果达不到强度要求则不予使用。

第九章 混凝土拱桥

第九章混凝土拱桥 9.1概述 9.1.1 拱桥的基本组成及主要特点 拱桥是我国公路上常用的一种桥梁体系。拱桥与梁桥的区别,不仅在于外形不同,更重要的是两者受力性能有差别。由力学知识可以知道,梁式结构在竖向荷载作用下,支承处仅仅产生竖向支承反力,而拱式结构在竖向荷载作用下,支承处不仅产生竖向反力,而且还产生水平推力。正是这个水平推力的存在,使得拱的弯矩将比相同跨径的梁的弯矩小很多,整个拱主要承受压力。这样,拱桥不仅可以利用钢、钢筋混凝土等材料来修建,而且还可以根据拱的这个受力特点,充分利用抗压性能好而抗拉性能较差的圬工材料(石料、混凝土、砖等)来修建。这种由圬工材料修建的拱桥又称为圬工拱桥。 1.拱桥的基本组成 拱桥和其他桥梁一样,也是由桥跨结构(上部结构)及下部结构两部分组成(如图9.1所示)。 图9.1 拱桥基本组成 一般的上承式拱桥,桥跨结构是由主拱圈(肋、箱)简称主拱及拱上建筑(又称拱上结构)所构成。主拱圈是主要承载构件,通过它把荷载传递给墩台及基础。由于主拱圈是曲线形,一般情况下车辆无法直接在弧面上行驶,所以在行车道系与主拱圈之间需要有传递荷载的构件和填充物,这些主拱圈以上的行车道系和传载构件或填充物统称为拱上建筑。在图9.1中,表示出了拱桥的主要组成部分和名称。 拱桥的下部结构包括桥墩、桥台和基础,用以支承桥跨结构,将桥跨结构的全部荷载传至地基。桥台还起与两岸路堤相连接的作用,使路桥形成一个协调的整体。 2. 拱桥的特点 拱桥的主要优点有: 1)跨越能力较大; 2)耐久性好,养护、维修费用少; 3)外型美观; 4)构造较简单。

拱桥的主要缺点有: 1)自重较大,相应的水平推力也较大,要求有庞大的墩、台和良好的地基。 2)随着跨径和桥高的增大,增大了拱桥的施工困难,提高了拱桥的总造价;另外,拱桥的施工工序较多,需要劳动力多,建桥时间也较长。 3)由于拱桥水平推力较大,在连续多孔的大、中桥梁中,为防止一孔破坏而影响全桥的安全,需要采用较复杂的措施,或设置单向推力墩,增加了造价。 4)上承式拱桥的建筑高度较高,当用于城市立体交叉及平原区的桥梁时,因桥面标高提高,而使两岸接线的工程量增大,或使桥面纵坡增大,既增大造价又对行车不利。 9.1.2 拱桥的分类 拱桥的型式多种多样,构造各有差异,可以按照不同的方式来进行分类。例如: 按照主拱圈所使用的建筑材料可以分为圬工拱桥、钢筋混凝土拱桥及钢拱桥等; 按照拱上建筑的形式可以分为实腹式拱桥(图9.20)及空腹式拱桥(图9.1); 按照拱轴线的形式,可将拱桥分为圆弧线拱桥、抛物线拱桥、悬链线拱桥等; 按照桥面的位置可分为上承式拱桥、下承式拱桥和中承式拱桥(图9.2); 按照有无水平推力,可分为有推力拱桥和无推力拱桥等。 现仅根据下面两种不同的分类方式对圬工和钢筋混凝土拱桥的主要类型作一些介绍。 1.按照结构体系分类 拱式桥跨结构按照静力图式可以分为简单体系拱桥和组合体系拱桥。本章主要介绍简单体系拱桥,组合体系拱桥内容将在第十二章介绍。 在简单体系的拱桥中,一般不考虑行车系结构(上承式拱桥的拱上建筑或中、下承式拱桥的拱下悬吊结构)参与主拱一起受力,主拱以裸拱形式作为主要承重结构,可以做成上承式的、下承式的(无系杆拱)或中承式的,均为有推力拱,拱的水平推力直接由墩台或基础承受。 按照主拱的静力特点,简单体系的拱桥又可以分成三铰拱、两铰拱和无铰拱三种,(见图9.3)。 ⑴三铰拱。属外部静定结构。由于温度变化、支座沉陷等原因引起的变形不会在拱内产生附加内力,计算时无需考虑体系弹性变形对内力的影响。当地基条件不良,又需要采用拱式桥梁时,可以采用三铰拱。但由于铰的存在,使其构造复杂,施工较困难,维护费用增大,而且减小了结构的整体刚度,降低了抗震能力,同时由于拱的挠度曲线在拱顶铰处有转折,对行车不利,因此三铰拱一般较少采用。目前最大跨径的三铰拱桥为德国的莫赛尔桥,跨径达107m。我国仅在一些较小跨径的桥上有所采用。公路空腹式拱桥的拱上建筑中的边

钢筋混凝土拱桥施工组织设计

桥施工方案目录 1、编制依据及原则 2、工程概况 3、工程特点 4、施工总体布置 4.1 施工组织机构 4.2 质量控制 4.3 施工顺序: 4.4 阶段工期控制 4.5 施工准备 4.5.1 施工动员 4.5.2 人员、物资、设备上场4.5.3 技术准备 4.5.4 工地清理 4.5.5 创建良好的外部施工环境 4.5.6 施工总平面布置 5、工程测量控制 5.1 控制测量: 5.1.1 导线测量: 5.1.2 水准点复测: 5.2 施工测量: 5.2.1 中线恢复测量:

5.2.2 临时水准点: 5.2.3 桥梁的施工控制: 6、主要施工方法 6.1 主桥施工 6.1.1 拱桥推力墩施工 6.1.2 索道系统和扣索系统6.1.3 主拱圈施工 6.1.3 拱上建筑施工: 6.2 引桥施工 6.2.1 基础施工 6.2.2 墩、台施工 6.2.3 连续箱梁施工 6.2.4 桥面系施工 7.施工技术资料管理办法 8.施工技术管理责任制 9、工期确保措施 10、质量保证措施 11、安全保证措施 11.1 安全保证体系 11.2 安全管理 11.3 重点控制 12、现场文明施工

13、现场环境保护 14、现场防火规定 15、保安计划 16、卫生健康保护 ****市XX大桥施工方案 1、编制依据及原则 1.1 由XX县城乡建设委员会提供的XX大桥招标文件、《****市XX 大桥两阶段施工图设计文件》、《****市长寿大桥工程地质详勘报告》以及四川省地矿局****检测中心检测报告、XX县气象资料等。 1.2 现场多次实地踏勘和标前会议纪要精神和补遗书。 1.3 国家及有关部门颁布的现行设计规范,施工技术规程、规范、质量检验评定标准和验收办法,以及在施工安全、工地保安、人员健康、环境保护等方面的具体规定。 2、工程概况 1.1 桥梁概况: ****市XX大桥位于XX县城,跨越长江支流桃花溪,位于原有XX 大桥(桥名“新桥”)上游约50m,是三峡库区水位上涨,原XX大桥被淹后的新XX大桥,是XX县的交通要道。主桥设计为拱桥,主要考虑其作为城市桥梁,突出其美观性,在三峡水位上升后,有长虹卧波的效果。大桥全长224.556 米,主跨为100 米钢筋混凝土箱形拱,河街岸引桥为2×20 米钢筋混凝土连续梁桥,关口岸引桥为3×20 米钢筋混凝土连续梁桥,主桥及河街岸引桥位于直线内,关口岸引桥位于

箱型拱桥

箱型拱桥,桁架拱桥和刚架拱桥。钢筋混凝土箱型拱桥具有刚度大、材料省的优点。中国第一座大跨径的箱型拱桥为一九七二年建成的四川省攀枝花市跨越金沙江的6号桥。该桥主跨146米,全长327米。拱箱系单箱3室,在钢拱架上进行浇筑施工。该桥在设计上为了节省拱架的用钢量,虽然也考虑了拱圈与钢拱架共同受力,而钢拱架仍达740吨。为了节省钢筋混凝土箱型拱桥的施工支架材料,四川省公路部门在修桥老工人甘师傅的建议下,吸取双曲拱桥集零为整、逐步组合成拱的工艺优点,提出钢筋混凝土箱型拱圈缆索吊装的施工方法。他们建议在设计时,把主拱圈改由多个U形截面拱肋组成。吊装就位后,再加预制盖板和现浇混凝土顶板,使之成为闭合的单室多箱截面。这样就比双曲拱桥更能适应无支架施工。按此建议进行模型试验后,于一九七〇年七月,在川藏公路上建成了一座跨径30米的无支架施工的箱型拱试验桥。在其吊装过程中,这种改进了的箱型主拱圈截面充分显示出它的优越性,避免了双曲拱桥在吊装中所出现的一些困难问题。随后,四川省陆续修建多座,都取得成功。由于这种改进的箱型主拱圈截面吊装安全、方便,所以在中国公路上得到广泛的应用。据不完全统计,截至一九八七年,已修建的大、中型箱型拱桥有70余座,其中有大桥、特大桥60座,总长约1.6万米。跨径在100米以上的有14座,其中跨径最大的是攀枝花市规划设计研究院设计、攀枝花市桥梁工程处施工修建的四川省攀枝花市的7号桥,主桥为单孔跨径170米。另外,还有云南省金沙江上的继红桥和金安桥,四川省攀枝花市的5号桥和宜宾市的马鸣溪桥,以及青海省的尖扎马克塘黄河大桥和甘肃省的玛曲黄河大桥。 大多数箱型拱桥都采用缆索吊装法施工,但随着跨径的增大,箱型拱桥吊装设备的用钢量剧增,吊装难度也增大,所以对大跨径桥梁的桥型和施工方案必须进行多方周密比较,不可忽视。一九八〇年,浙江省用桁架式悬臂拼装法建成单孔跨径60米、单室箱型截面的兰江大桥中洲支桥和两孔跨径各92米、单室箱型截面的曹娥江清风大桥,显示出这种主拱圈截面型式和悬臂拼装法对修建大跨径拱桥不失为一种比较成熟的、经济的设计、施工方案。 拱桥结构自身的重量偏大,在一定程度上限制了它的使用范围。为了进一步减轻拱桥结构体系的自重,实现在软弱地基上建拱的设想,中国公路桥梁工程技术人员在总结圬工(砖、石和混凝土)拱桥、双曲拱桥及钢筋混凝土拱桥的基础上,着重从改革拱桥结构型式入手,进行探索,取得了明显的成绩。从六十年代后期至八十年代中期,已创建了两种适应于这一目的的钢筋混凝土拱桥桥型,即桁架拱桥和刚架拱桥。 桁架拱是由桁架和拱组合而成的一种混合结构体系。它兼具两者的性能、优点,能充分发挥各个构件的潜力。桁架拱桥的拱上构造和拱肋组成的桁架片,既是传力结构,也是受力结构,因而用料较省,自重较轻,对软弱地基的适应性也较双曲拱桥、肋拱桥、箱型拱桥为好。 六十年代中期,上海市嘉定、金山等县修建了一些不同型式的试验性的轻型农村道路桥,并创建成功一种把主拱圈的拱肋和拱上构造联成为桁架式拱片的桁架拱。一九七〇年,第一座跨径26米的桁架拱公路桥(在上海市金山县)建成。同年,浙江省修建了多座跨径30至50米的桁架拱公路桥。由此,逐步积累了桁架拱桥在设计、施工方面的经验。随后,各省、市相继修建。到一九七九年,在全国干线公路和县乡公路上修建的大、中型桁架拱桥达140座以上,同类的小桥和农村道路桥则为数更多,其中最长的公路桁架拱桥是江苏省的墩尚沭河桥(全长684米)。经过十多年的运营考验,虽然有些桥的受拉构件出现一些裂缝,但总的来看,桁架拱桥是一种成功的桥型。预应力的引入,更使这种桥型在设计和施工工艺上有更新的发展,其整体性与耐久性都有所提高。 七十年代中期修建的预应力混凝土桁架拱公路桥,有浙江省宁海县的越溪桥和河南省的嵩县大桥。越溪桥单孔跨径75米,全长138米。嵩县大桥是9孔,跨径各50米,全长489米。这种桥在四川、江西、贵州等省也有修建。而贵州省在八十年代所修建的长岩桥、白果沱桥(跨径100米)和剑河桥(跨径150米),则是预应力混凝土悬臂桁架拱桥采用桁架悬

拱桥设计计算说明书书

目录 一、设计背景 (1) (一)概述 (1) (二)设计资料 (1) 1、设计标准 (1) 2、主要构件材料及其参数 (1) 3、设计目的及任务 (2) 4、设计依据及规范 (2) 二、主拱圈截面尺寸 (4) (一)拟定主拱圈截面尺寸 (4) 1、拱圈的高度 (4) 2、拟定拱圈的宽度 (4) 3、拟定箱肋的宽度 (4) 4、拟定顶底板及腹板尺寸 (4) (二)箱形拱圈截面几何性质 (5) 三、确定拱轴系数 (6) (一)上部结构构造布置 (6) 1、主拱圈 (6) 2、拱上腹孔布置 (7) (二)上部结构恒载计算 (8) 1、桥面系 (8) 2、主拱圈 (8) (三)拱上空腹段 (9) 1、填料及桥面系的重力 (9) 2、盖梁、底梁及各立柱重力 (9) 3、各立柱底部传递的力 (9) (四)拱上实腹段 (9) 1、拱顶填料及桥面系重 (9) 2、悬链线曲边三角形 (10) 四、拱圈弹性中心及弹性压缩系数 (12) (一)弹性中心 (12) (二)弹性压缩系数 (12) 五、主拱圈截面内力计算 (13) (一)结构自重内力计算 (13) 1、不计弹性压缩的恒载推力 (13) 2、计入弹性压缩的恒载内力 (13) (二)活载内力计算 (13) 1、车道荷载均布荷载及人群荷载内力 (13) 2、集中力内力计算 (15) (三)温度变化内力计算 (17) 1、设计温度15℃下合拢的温度变化内力 (18) 2、实际温度20℃下合拢的温度变化内力 (18)

(四)内力组合 (19) 1、内力汇总 (19) 2、进行荷载组合 (19) 六、拱圈验算 (21) (一)主拱圈正截面强度验算 (21) 1、正截面抗压强度和偏心距验算 (21) (二)主拱圈稳定性验算 (22) 1、纵向稳定性验算 (22) 2、横向稳定性验算 (22) (三)拱脚竖直截面(或正截面)抗剪强度验算 (22) 1、自重剪力 (22) 2、汽车荷载效应 (23) 3、人群荷载剪力 (24) 4、温度作用在拱脚截面产生的内力 (24) 5、拱脚截面荷载组合及计算结果 (25) 七、裸拱验算 (26) (一)裸拱圈自重在弹性中心产生的弯矩和推力 (26) (二)截面内力 (26) 1、拱顶截面 (26) 2、1 4 截面 (26) 3、拱脚截面 (26) (三)强度和稳定性验算 (27) 八、总结 (28) 九、参考文献 (29)

箱型拱桥

宜宾岷江大桥 主跨(Main Span):100米 设计单位(Designed by):四川省公路设计院 施工单位(Constructed by):四川桥梁工程公司 桥梁类型(Type of the Bridge):拱桥、箱形拱桥 所在地(Location):四川、宜宾、岷江 全长(Length):532.72米 建成时间(completed year):1973年 中文简介(Introduction in Chinese):岷江大桥位于四川省宜宾市,主桥为钢筋混凝土箱形拱桥,最大桥跨100m。分跨布置为55+2×100+55(m),另有8×20m石拱桥引孔,全长532.75m。桥面净宽:8+2×2(m)人行道。主拱箱高1.6m,矢跨比1/6。全拱横向分6箱室,纵向分5段预制,缆索吊装施工。中墩基础采用钢丝水泥薄壁浮运沉井施工。于1973年1月建成。四川省交通规划设计院设计,四川省桥梁公司施工。 英文简介(Introduction in English):Name: Yibin Bridge over Minjiang. Location: Yibin, Sichuan Prov. Main span: 100m. 55+2×100+55(m) multi-span box arch bridges. Box cross section with 6 cells transversely. Erected by cable crane. Completed in Jan. 1973. Designed by Highway Design Institute of Sichuan Prov. Constructed by Bridge Engineering Co. of Sichuan Prov.

桥梁工程-拱桥题库(含解答)

桥梁工程-拱桥题库(含解答) -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

第一节概述 1.拱桥与梁桥相比在受力性能上有哪三点差异 答:①竖向荷载作用下,支承处存在水平推力H,且全拱均相等 ②由于水平推力使拱桥截面弯矩比同截面的梁桥小 ③主拱主要承受弯压内力 2.拱桥按拱上结构的形式可分为哪两种类型 答:分为①实腹式拱桥②空腹式拱桥 3.拱桥按结构体系可分为哪两类各自受力特点是什么 答:如下表 4.拱桥按主拱圈的横截面形式可分为哪四类 答:分为①板拱桥②肋拱桥③双曲拱桥④箱形拱桥 5.何谓计算矢跨比何谓净矢跨比 答:计算矢跨比(D):拱圈(或拱肋)的计算矢高(f)与计算跨径(l)的比值 净矢跨比(D。):拱圈(或拱肋)的净矢高(f。)与净跨径(l。)的比值

拱顶截面 第二节拱桥的构造与设计 1.何谓板拱 答:主拱圈为矩形实体截面的拱桥,称为板拱 2.何谓肋拱桥其上部结构由哪几部分组成 答:肋拱桥是由两条或多条分离的平行拱肋,以及在拱肋上设置的立柱和横梁支承的形成部分组成的拱桥,其上部结构由横系梁、立柱、横梁、纵梁及桥面板组成。 3.箱形拱的主要特点有哪五点 答:①截面挖空率大,减轻了自重 ②箱形截面的中性轴大致居中,对于抵抗正负弯矩具有几乎相等的能力,能较好地适应主拱圈各截面的正负弯矩变化的需要 ③由于是闭合空心截面,抗弯和抗扭刚度大,拱圈的整体性好,应力分布较均匀 ④单条肋箱刚度较大,稳定性好,能单箱肋成拱,便于无支架吊装 ⑤制作要求较高,吊装设备较多,主要用于大跨径拱桥 4.箱形截面常用的组成方式有哪四种各种的优缺点是什么 答:① U型肋组成的多室箱形截面 优点:预制不需要顶模,吊装稳定性好

圬工拱桥课程设计

等截面悬链线空腹式圬工拱桥 设计计算书 专业:道路与桥梁工程 课程:《桥梁工程》课程设计 学号: 学生: 指导教师: 日期: 桥梁工程课程设计任务书

一、设计容及要求 1、拟定各部分尺寸及所用材料 2、选定拱轴系数 3、拱圈弹性中心及弹性压缩系数 4、永久荷载力计算(结构自重、混凝土收缩) 二、设计原始资料 跨径50米等截面悬链线圬工拱桥计算 桥面净空:净---7+2×0.75m。 设计荷载:公路I级荷载,人群3.0KN/m。 三、设计完成后提交的文件和图表 1、设计说明书 2、图纸:桥梁总体布置图,平、纵、横。 四、主要参考资料 1.《公路桥涵设计通用规》(JIJ021一89)人民交通 2.《公路钢筋混凝土及预应力混凝土桥涵设计规》(JIJ023一85)人民交通3.《桥梁工程概论》亚东,西南交通大学; 4.《桥梁工程》玲森,人民交通; 5.《混凝土简支梁(板)桥》易建国,人民交通; 6. 《桥梁计算示例集》易建国,人民交通。 五、课程设计成果装订顺序 1.封面 2.设计任务书 3.目录 4.正文 5.设计总结及改进意见 6. 参考文献 7. 图纸或附表

目录 1、设计资料 (4) 1.2 材料及其数据 (4) 2、主拱圈计算 (5) 2.1 确定拱轴系数 (5) 2.2 拱轴弹性中心及弹性压缩系数 (11) 2.3 主拱圈截面力计算 (11) 2.4 主拱圈正截面强度验算 (14) 2.5主拱圈稳定性验算 (16) 2.6主拱圈裸拱强度和稳定性验算 (17) 2.6.1.弹性中心的弯矩和推力 (17) 2.6.2截面力 (17)

1、设计资料 1.1 设计标准 1. 设计荷载 公路I 级,人群20.3m kN 。 2.跨径及桥宽 净跨径050l m =,净矢高0f 10m =,净矢跨比5 100=l f 。 桥面净空为净720.75m +?,B 8.5m =。 1.2 材料及其数据 1. 拱上建筑 拱顶填料厚度,m h d 5.0=,包括桥面系的计算厚度为m 736.0,平均重力密度3120m kN =γ。 拱上护拱为浆砌片石,重力密度3223m kN =γ。 腹孔结构材料重力密度3324m kN =γ。 主拱拱腔填料为砂、砾石夹石灰炉渣黄土,包括两侧侧墙的平均重力密度 3419m kN =γ。 2. 主拱圈 M10砂浆砌MU40块石,重力密度3524m kN =γ。 极限抗压强度26500m kN R j a =。 弹性模量25200000800m kN R E j a m == 拱圈设计温差为C ?±15。 3. 桥墩 地基土为中等密实的软石夹沙、碎石,其容许承载力[]20500m kN =σ。基础与地基间的滑动摩擦系数取5.0=μ。

现浇钢筋混凝土箱形拱桥主拱圈施工技术

120m 跨现浇钢筋砼箱形拱桥主拱圈施工技术 1. 工程概况 xx 市xx 大桥位于xx 市XX 镇内,为xx 水库建成后原有道路改建工程。该桥位于 xx 水库上游,跨越 库区,终点与上大线连接。该桥桥长 192.8m ,其中桥梁主跨为净跨径 120m 上承式悬链线箱形拱桥,其矢 跨比1/6,拱轴系数m = 1.756 ;拱上结构为全空式三柱排架结构,采用 7.8m 先张法预应力空心板作桥面 结构,主箱为高2m 的等截面单箱双室,三腹板支承拱上排架柱;拱上结构根据高度分为横墙和排架两种 形式;拱座采用 8根$ 130cm 桩承台基础。桥梁设计荷载为公路n 级,桥面宽度 9.5m (0.25m 栏杆+ 1.0m 图1桥梁总体布置图 2. 支架施工 2.1.支架布置 本桥根据施工条件采用有支架施工。在两拱脚段根据原有的地形情况采用在硬化的地面上直接拼装碗 扣式脚手架,中间段采用梁柱式复合体系:其结构构成为:明挖现浇混凝土基础;钢支架分三层,底层为 置于混凝土基础上钢管立柱支墩,中层用万能杆件搭成框架结构形成纵梁,上层为满布式碗扣式脚手架。 拱部利用碗扣式支架调整成拱型,拱架卸落利用碗扣式支架顶的可调托撑完成。 钢管立柱支墩用$ 325 X 8 mm 钢管作为主要支撑柱, 在N 型万能杆件高度变化处采用双立柱, 其余采用 单立柱,各钢管立柱水平用 I12工字钢连接,且在纵横设置剪刀撑;其上用万能杆件搭成 2m 框架结构, 通过横向]28a 槽钢分配梁与立柱连接,在 N 型万能杆件两侧设置缆风绳;在万能杆件上布设纵横向工字 钢分配梁,其上搭设碗扣件式脚手架。全桥钢管立柱布置成 11跨形式,跨度为 8 m 、9m 10m 。支架两拱 脚段根据原有的地形情况采用在硬化的地面上直接拼装碗扣式脚手架。具体布置见图 人行道+ 7.0m 行车道+ 1.0m 人行道+ 0.25m 栏杆 1。 19280 心桥面总体布2置图见图 4 .4CO-KO 直 占 小终

钢筋混凝土箱型拱桥主拱圈有支架施工

钢筋混凝土箱型拱桥主拱圈有支架施工 摘要:结合重庆黔江至湖北咸丰二级公路上的黔江区正舟大桥的施工,介绍100m跨钢筋混凝土箱型拱桥采用常备式钢拱架作为支架、塔式起重机组装浇筑的有支架施工技术。 关键词:二级公路,钢筋混凝土箱型拱桥,有支架施工 1 工程概况 黔江区正舟大桥桥址区属中、低山峡谷地貌,横跨黔江,沟心距离桥面最高约84米,采用1孔100米钢筋混凝土箱形拱桥。桥梁主拱采用1-100m钢筋混凝土等截面悬链线箱板拱,矢跨比为1/6,拱轴系数m=2.514,主拱采用单箱7室截面,拱圈厚1.6m。横隔板采用预制组装。 拱上构造由拱上横墙、腹拱、侧墙及桥面构造组成。 2 施工方案 考虑到实际条件,经过多个方案比选,最后确定采用有支架施工,即塔式起重机吊装,常备式钢拱架作为支架的施工方案。 具体的施工程序为:砌筑拱台、钢塔架承台,预制横隔板—砌筑临时立柱、拱座、扣锁锚定—安装塔式起重机—安装砂筒—拼装钢拱架—安装垫木、弓形木、横木—拼装底模—安装横隔板—浇筑组装接头—浇筑底板—浇筑腹板—浇筑顶板—落架、拆模及卸架—拱上结构施工。 2.1钢塔架及扣绳锚锭布置 (1)采用租用常备式钢拱架基本三角组合成钢桁架,不于计算内力,只考虑钢塔架的倾覆稳定,应对称设置抗风维持钢塔稳定即可。塔顶用φ80mm优质钢棒连接左右两片杆塔作吊扣承重杆,钢塔顶前后端用不等边角钢(B=100mm,b=80mm,d=10mm)横向连接。钢塔倾向河心。只拉锚锭抗风和横向稳定抗风。 (2)考虑到基底土壤成分,计算容许土压力及侧压力,拟定锚锭尺寸为宽4米,长4.5米,按横重式设计,锚头按双头设置,锚头高度为0.8米,直径0.8米,重心位置为0.4米,采用C30混凝土。其中倾覆稳定系数k1=1.49>1.4,滑动稳定系数k2=3.53>1.4。按固端悬臂计算配筋,锚锭设置底板钢筋,四周设置构造钢筋。 2.2拱架布置及安装

上承式钢筋混凝土箱肋拱桥拱肋架设工艺

上承式钢筋混凝土箱肋拱桥拱肋架设工艺 一、工程概况: 大桥主桥上部结构为上承式钢筋混凝土箱肋拱桥,跨径布置自长沙岸起为3×70m+3×94m+5×70m。箱肋单跨主拱圈由8个等截面单箱组成4条分离式拱肋,半幅桥的两组肋之间由横系梁连接。拱肋采用三段预制吊装,全桥共264段拱肋。拱上构造为立柱排架和简支板组成的梁板式结构,桥面连续。 箱肋拱拱轴系数均为1.543; 净矢跨比:94m和70m分别为1/6和1/7; 单箱截面高度:94m和70m分别为1.8m和1.5m; 单箱截面宽度均为1.5m; 设计节段吊装重量:94m:边段620kN,中段570 kN; 70m:边段476kN,中段468 kN。 拱肋接头型式为对接平接头,顶底板端设连接定位角钢,定位螺栓为M27螺栓。箱肋吊点、扣点未设吊环,采用钢丝绳捆绑吊装。 二、编制依据: 1.招标文件 2.公路桥涵施工技术规范(JTJ041-89)

3.公路工程质量检验评定标准(JTJ071-98) 4.施工组织设计 5.设计施工图 三、拱肋架工艺 (一)缆索吊机简介 按照施工组织设计的安排,主桥上部结构安装采用缆索吊机作为起重设备。本缆索吊机为三塔双跨,A塔(长沙岸)位于桥线里程K1+579m,B塔位于主桥墩43#墩墩身顶,其中心里程为K2+198m,C塔(衡阳岸)位于桥线里程K2+634m,即AB跨跨度为619m,BC 跨跨度为436m。 主要性能:AB跨最大吊重为70T,BC跨为50T。 起吊范围:AB跨最左(靠长沙岸)起吊位置距A塔50m AB跨最右(靠衡阳岸)起吊位置距B塔18m BC跨最左起吊位置距B塔15m BC跨最右起吊位置距C塔30m 本缆索吊机塔架均为万能杆件拼装而成,塔架下端与基础顶面支座铰接,主索锚固系统采用钻孔桩承合式地锚,锚碇系统为可移动式,索鞍亦可在塔顶横移。 起吊部分:缆索吊机承重索为8根φ60钢丝绳,4根一组,一组

拱桥练习题和答案

拱桥 一、填空题 1、按照拱上建筑的型式可以将拱桥分为:实腹式和空腹 式。 2、按照桥面的位置可分为:上承式、中承式、下承式。 3、按照拱圈截面形式可分为:板拱、肋拱、箱形拱、双曲拱等。 4、确定拱桥设计高程有四个,分别为:跨中结构的底面高程、起拱线的高程、 基底高程和桥面高程。 5、拱桥常用的拱轴线形有悬链线、抛物线、圆弧线。 6、拱桥分类方法很多,按其结构静力图示可分为静定拱、超静定拱。 7、拱桥的矢跨比是指计算矢高与计算跨度之比。当矢跨比增大时,拱的推力减小。 8、梁桥以受弯矩与剪力为主,拱桥主拱圈以受轴向压力为主。 9、拱上填料的作用是扩大车辆荷载分布面积的作用,减少车辆荷载的冲击作用。 10、无铰拱桥的受力状态与三铰拱桥的受力状态相比,它的主要优点内力分布均匀,整体刚度大 11、当跨径、荷载和拱上建筑等情况相同时,f/L=1/3的拱桥和f/L=1/8的拱桥相比,前者的水平推力比后者_小_________。 12、混凝土砼拱桥极限跨度在__500__米左右,经济跨度___100-300_______米;钢拱桥在1200__米左右,经济跨度___300-500_______。 13、万州长江大桥采用的缆索吊装和悬臂扣挂施工方法。 14、组合体系拱桥的最重要特点是桥面结构,主拱结构形成整体共同承受荷载。 15、双曲拱桥主拱圈通常由拱肋、拱波、拱板、横向联系几部分组成。

16、迄今最大跨径的钢管混凝土拱桥是巫山长江大桥,最大跨径的石拱桥是 是山西晋城丹河大桥,最大跨径的钢筋砼拱桥是万县长江大桥,最大跨径的钢拱桥是上海卢浦大桥。 17、当拱圈宽跨比B/L<1/20 时,应验算拱圈的横向稳定性。 18、双曲拱桥的建设策略 是。 19、空腹式拱桥拱上建筑的腹拱墩有排架式和横墙式两种。 20、拱铰主要有弧形铰、铅垫铰、不完全铰、平铰和钢铰五种形式。 21、中下承式拱桥中的吊杆间距通常为4~10 米,可分为刚性吊杆、半刚性吊杆、 柔性吊杆三种构造,其中刚性吊杆一般采用预应力混凝土矩形截面,半刚性吊杆一般采用钢管混凝土园形截面,柔性吊杆采用高强钢丝束制成。 二、名词解释 1、合理拱轴线:与拱上荷载的压力线重合,主拱截面只受轴向压力而无弯矩和剪力,截面应力分布均匀。 2、简单体系拱桥:桥面系结构不参与主拱一起受力,主拱以裸拱的形式作为主要承重结构。简单体系拱是有推力拱,拱的水平推力由墩台或基础承受。 3、组合体系拱桥:梁和拱两种基本结构组合起来,共同承受桥面荷载和水平推力,充分发挥梁受弯、拱受压的结构特性及其组合作用的拱桥 4、提篮式拱桥:两拱肋向内侧倾斜一定的角度值,以增加拱桥的稳定性。这类拱桥称为提篮拱。 三、判断题 1、拱桥在竖向荷载作用下,桥墩或桥台除了承受铅垂反力外,还将承受水平推力,水平推力将显著降低荷载引起的拱圈(或拱肋)横截面内的弯矩。 ( Y ) 2、简单体系拱桥均为有推力拱。 ( Y ) 3、组合体系拱桥均为无推力拱。

拱桥计算书

目录 1.设计依据与基础资料 (1) 1.1标准及规范 (1) 1.1.1标准 (1) 1.1.2规范 (1) 1.1.3参考资料 (1) 1.2主要尺寸及材料 (1) 1.2.1主拱圈尺寸及材料 (1) 1.2.2拱上建筑尺寸及材料 (2) 1.2.3桥面系 (2) 2.桥跨结构计算 (2) 2.1确定拱轴系数 (2) 2.2恒载计算 (4) 2.2.1主拱圈恒载 (4) 2.2.2拱上空腹段恒载 (5) 2.2.3拱上实腹段的恒载 (6) 2.3验算拱轴系数 (7) 2.4拱圈弹性中心及弹性压缩系数 (8) 2.4.1弹性中心计算 (8) 2.4.2弹性压缩系数 (8) 3.主拱圈截面内力计算 (8) 3.1恒载内力计算 (8) 3.1.1不计弹性压缩的恒载推力 (8) 3.1.2计入弹性压缩的恒载内力 (8) 3.2汽车荷载效应计算 (9) 3.3人群荷载效应计算 (12) 4.荷载作用效应组合 (13) 5.主拱圈正截面强度验算 (14) 6.拱圈总体“强度-稳定”验算 (16)

等截面悬链线板拱式圬工拱桥 1.设计依据与基础资料 1.1标准及规范 1.1.1标准 跨径:净跨径m L 600=, 净矢高m f 100=,6 100=L f 设计荷载:公路—II 级汽车荷载,人群荷载 桥面净宽:净7+20.75m 人行道。 1.1.2规范 《公路工程技术标准》JTG B01-2003 《公路桥梁设计通用规范》JTG D60-2004(以下简称《通规》) 《公路圬工桥涵设计规范》JTG D61-2005(以下简称《圬规》) 1.1.3参考资料 《公路桥涵设计手册》拱桥上册(人民交通出版社 1994)(以下简称《手册》) 1.2主要尺寸及材料 半拱示意图 图1-1 1.2.1主拱圈尺寸及材料 主拱圈采用矩形截面,其宽度m B 9=,厚度m D 3.1=,采用M10砂浆砌筑MU50粗

上承式钢筋混凝土箱形拱桥施工组织设计

目录 第一章、总体施工组织布置及规划 (1) 第一节、工程概况 (1) 第二节、编制依据 (5) 第三节、项目组织机构及岗位职责 (5) 一、项目管理组织机构 (5) 二、部室管理职责 (6) 第四节、工程施工环境 (10) 一、水文、气象条件 (10) 二、建筑环境条件 (10) 三、地质勘查成果 (11) 第五节、工程特点及施工难点 (11) 第六节、施工总平面布置 (11) 一、施工现场平面布置原则 (11) 二、施工现场平面布置 (13) 三、预制梁场总布置图 (14) 四、项目临时占地表 (15) 第七节、总体施工概述 (16) 第二章、主要工程项目的施工方案、方法与技术措施 (18) 第一节、引桥部分 (18) 一、测量施工方案(含主桥) (18) 二、挖孔桩施工方案 (22) 三、承台施工方案 (25) 四、桥台施工方案 (30) 五、墩柱、系梁施工方案(含主桥) (33) 六、预应力盖梁施工方案 (37) 七、后张法预应力T梁施工方案 (44) 八、桥面及附属工程施工方案(含主桥) (57)

九、装饰工程施工方案(含主桥) (68) 第二节、主桥部分(重点) (71) 一、主拱基座施工方案 (71) 二、拱座施工方案 (80) 三、拱圈施工方案 (83) 四、垫梁施工方案 (95) 五、主桥墩柱、盖梁施工方案 (96) 六、空心板梁预制方案 (96) 第三章、工期保证体系及保证措施 (111) 第一节、工期计划安排 (111) 第二节、工期保证体系 (113) 第三节、工期保证措施 (113) 一、从组织管理上保证工期 (113) 二、从计划安排上保证工期 (114) 三、从资源上保证工期 (115) 四、从技术上保证工期 (115) 五、其它保证措施 (115) 第四章、工程质量管理体系及保证措施 (117) 第一节、工程质量管理体系 (117) 第二节、工程质量保证措施 (118) 一、测量精度保证措施 (118) 二、挖孔桩施工质量保证措施 (118) 三、钢筋施工质量保证措施 (119) 四、混凝土浇筑质量保证措施 (123) 五、承台施工质量保证措施 (123) 六、墩柱施工质量保证措施 (126) 七、盖梁施工质量保证措施 (127) 八、T梁预制及安装质量保证措施 (127)

我认识的钢箱肋拱桥

我认识的钢箱肋拱桥 桥梁,作为一种越来越重要的交通设施,从原始时期就开始逐步发展,千百年以来一直是人类重要的交通方式,从最初的独木桥到后来的石桥一直到近现代的钢筋混凝土桥梁和钢构桥,技术不断发展进步,桥梁的跨度也越来越大,材料也日趋先进。我国桥梁建设随着国民经济增长得到了飞跃发展,江河湖海上建造了一座座大桥,许多桥梁享誉世界,这其中特别是钢桥,在现代桥梁建设中得到众多桥梁设计师的青睐,因此有许多著名的钢桥出现,不仅美观、经济,而且更稳定轻便。同时钢桥梁制造技术也有了极大地提高,下面就我所知谈一下我对钢桥的认识。 目前运用最多的虽然还是混凝土桥梁,但钢桥的优点也日益突出,因为本身的材料为强度很大的钢材,在满足承载力和稳定性的要求之外相比其他混凝土桥梁要轻了许多,因此很多国家都很注重发展钢桥。除此之外,钢桥还具有一下几个优点:1.跨越能力大。较之钢筋混凝土桥来说,钢桥的跨度远大于其他桥梁。2.制作方便。大多数钢桥均由预制钢梁组装而成,因此只要预制好就省去了现浇混凝土般的麻烦。3.便于运输。由于自重较轻,便于汽车运输。4.安装速度快。钢桥构件便于悬臂施工法拼装,有成套设备,工艺很成熟,一般采用焊接和螺栓连接,施工方便。5.对于风荷载和地震等灾害有较好的防灾性能。同时,钢桥也存在诸如造价高,易腐蚀,变形大,耐火差,稳定性差,养护成本高,技术要求高等缺点。

钢桥的种类很多,大体来说有三种:钢梁桥、钢拱桥和钢索桥以及钢混结合梁桥。其中,钢梁桥又有钢板梁桥、钢桁梁桥和钢箱梁桥。钢拱桥又有钢桁拱桥、钢箱拱桥、钢管拱桥和梁拱组合桥。而钢索桥分为悬索桥和斜拉桥。对于简支钢板梁桥多用于中小跨度的铁路桥,简支或连续的钢桁梁桥多用于较大跨度的铁路桥。悬索桥和斜拉桥则适用于大跨度公路桥,钢混结合梁桥多用于城市公路桥主梁用钢板梁做成的钢梁桥叫做钢板梁桥。由于它构造简单,制作容易,运输安装维护养护等都十分方便,所以,当跨度较小时,钢板梁桥比钢桁梁桥经济,但与钢筋混凝土梁桥相比造价又太高,所以只有在工期场地等条件限制时才采用钢板梁桥。 主梁为薄壁闭合截面形式的梁桥称为钢箱梁桥。箱型梁的应用较为广泛,不仅梁式桥使用,其他如悬索桥和斜拉桥的主梁也多采用箱型截面,可见箱型截面有一定的优势。一般钢箱梁都配置加劲肋等加劲构件,是为了保证其受力性能和稳定性。与钢桁梁桥相比,钢箱梁桥采用正交异性钢桥面板和薄钢板的梁肋更加节省钢材用量,跨度越大越是节省。而且它抗弯和抗扭刚度较大,适宜做成连续梁。 而对于我个人需要完成的毕业设计:公路上承式钢箱肋拱桥而言,我的基本认识是:一般用在跨度较大的桥梁上,在大跨度缆索支承桥梁中,钢箱主梁的跨度达几百米及至上千米,一般分为若干梁段制造和安装,其横截面具有宽幅和扁平的外形特点,高宽比达到1:10左右。

钢筋砼拱桥施工技术

钢筋砼拱桥施工技术 一、概述 拱桥在我国桥梁建筑史上占有很重要的地位,尤其是石拱桥,不仅历史悠久,分布较广,而且有的迄今仍在发挥作用。我国建于公元282年(西晋)洛阳七里涧上的单跨半圆形石拱桥,是现有历史记载中最早的石拱桥,至今仍在使用。我国闻名于世的古代石拱桥有:河北赵县的安济桥(即赵州桥),建于595-605年(唐朝),是世界上第一座空腹石拱桥;苏州的宝带桥,建于819年(唐朝);北京的卢沟桥,建于1192年(南宋)。以上三座桥均列为全国重点文物加以保护。 十九世纪九十年代我国开始生产水泥,随着水泥的问世,砼的应用日益广泛,于1905年我国建成第一座砼拱桥(沈阳——丹东间的十四鸡里沟桥);1909年建成第一座钢筋砼拱桥(广州——深圳间的清水河桥),从石拱桥——砼拱桥——钢筋砼拱桥,经历了一千六百二十七年的漫长岁月。 不论是石拱桥或砼拱桥,两者的跨越能力有限,随着桥梁跨度的发展,以钢筋砼拱桥取代前者是必然的趋势。 1934~1936年,我国在湘粤两省交界处修建了五大钢筋混凝土拱桥,拱桥的最大跨径已达40米。中华人民共和国成立初期,修建的钢筋混凝土拱桥仍沿袭实腹式板拱,到50年代中期开始采用空腹式肋拱,这是我国拱桥发展史上的一个转折点,为钢筋混凝土拱桥向大跨度发展奠定了基础。 拱桥的基本特点:梁式结构在竖向荷载作用下,支承处仅仅产生竖向支承反力,而拱式结构在竖向荷载作用下,支承处不仅产生竖向反力,而且产生水平推力。 拱圈中的弯矩比相同跨径梁的弯矩小很多,因而使整个拱圈主要承受压力,可利用抗压性能较好而抗拉性能较差的圬工材料(石料、混凝土、砖等)来修建拱桥,这种由圬工材料修建的又称为圬工拱桥。 拱桥主要由桥跨结构和下部结构组成,而桥跨结构又由桥跨结构、拱圈、拱上建筑组成,下部结构由桥墩、桥台、基础组成。 拱桥的主要类型: ①按主拱圈(肋、箱)所使用的建筑材料可为:圬工拱桥、钢筋砼拱桥、钢拱桥。 ②按拱上建筑的形式可分:实腹式拱桥、空腹式拱桥。 ③按主拱圈采用的拱轴线形式可分:圆弧拱桥、抛物线拱桥、悬链线拱桥。

钢筋混凝土肋拱桥极限分析朱树人

2012年10月内蒙古科技与经济Octo ber2012 第20期总第270期Inner M o ngo lia Science T echnolo gy&Economy N o.20T o tal N o.270钢筋混凝土肋拱桥极限分析 朱树人1,张 文2,贾舒阳2 (1.内蒙古集通铁路(集团)有限责任公司;2.内蒙古交通设计研究院有限责任公司,内蒙古呼和浩特 010000) 摘 要:结合某钢筋混凝土肋拱桥的极限分析实例,通过建立有限元分析模型,分析在各荷载组合作用下,拱圈的承载能力及应力分布情况,进而对该桥的承载能力进行评判,为此类桥型的设计和验算提供借鉴。 关键词:钢筋混凝土;肋拱桥;极限分析 中图分类号:U448.22 文献标识码:A 文章编号:1006—7981(2012)20—0069—02 拱桥具有跨越能力较大、耐久、养护维修费用少、外形美观等优点,同时也存在自重较大、施工困难、水平推力较大、建筑高度比梁式桥高等缺点。 与板拱桥相比,钢筋混凝土肋拱桥能较多地节省混凝土用量,减小拱体重量,相应地,桥墩、桥台的工程量也减少。同时随着恒载对拱肋内力的影响减小,活载影响相应增大,钢筋可以较好地承受拉应力,能够充分发挥建筑材料的作用,同时跨越能力也得到提升。 1 工程概况 乐山市某大桥于1997年9月组织修建,于2000年4月28日完工。桥梁总长为653.63m。桥跨布置从犍为向乐山方向:1×20m(预应力钢筋混凝土板简支梁)+3×100m(钢筋混凝土闭合箱型肋拱)+3×50m(钢筋混凝土实心矩形肋拱)+5×20m(预应力钢筋混凝土板简支梁)。桥跨结构分上下两幅,单幅桥面宽12.5m,横向布置为1.75m(人行道)+ 2.5 m(非机动车道)+ 1.0m(绿化带)+7.25m(机动车道)。设计荷载等级为:汽车-超20,挂-120,设计洪水频率1/300,地震烈度7度,按四级通航标准。桥面纵坡为1%,桥面2%人字横坡,在盖梁顶面形成。该桥单幅桥面横向布置见图1所示。 图1 单幅桥面横向布置 第三联为3×50m(钢筋混凝土实心矩形肋拱)为等截面钢筋混凝土实心矩形肋拱,拱肋宽1.0m,高1.4m。每跨拱上共8个排架,排架上纵置桥面板,桥面板跨径5.889m,每跨桥面由12块单板组成。主拱圈采用40号混凝土,拱座采用30号混凝土,桥面板、4#、5#墩身均采用20号卵石混凝土、墩帽均采用25号卵石混凝土,4#墩基础采用25号混凝土、5 #墩钻孔桩采用30号混凝土、承台采用25号混凝土。纵向钢筋采用II级钢筋。在墩上立柱桥面板处和两端设置伸缩缝。50m拱肋采用满堂支架现浇施工,其立柱及盖梁均按现浇施工。 2 计算方法及计算模型 桥跨结构分上下两幅,计算模型取单幅结构。50m跨钢筋混凝土肋拱桥模型考虑三跨50m拱连拱效应进行计算分析。单幅桥面横向宽度为1.75m (人行道)+ 2.5m(非机动车道)+2×3.5m(机动车道)+1.0m(绿化带);每跨拱上共8个排架,排架上纵置桥面板,桥面板计算跨5.89m,每跨桥面由11块单板组成,考虑8cm厚铺装参与结构受力,每块桥面板截面尺寸如图2所示。结构桩基础部分考虑5倍桩直径的长度。计算考虑桥面1.0%的纵坡。 图2 桥面单板截面尺寸(尺寸单位:cm) 验算工作采用专用平面程序“桥梁博士”进行,模型采用梁单元模拟,结构整体单元划分为468个单元。其中拱圈为162个单元(单元号为:27~188);桥面板为162个单元(单元号为:189~242,286~339,383~436);排架立柱为118个单元(单元号为: 243~285,340~382,437~468),其他为墩和桩基单元。计算按三个施工阶段进行,第1施工阶段:建立桩基、桥墩和主拱圈,施加横隔板自重,主拱为三铰拱结构;第2施工阶段:把拱圈结构转换为无铰拱,施加拱肋间系梁自重;第3施工阶段:建立立柱和桥面板,立柱系梁自重、盖梁自重;成桥后施加二期恒载、温度荷载和使用活载。施工阶段单元划分及计算模型见图3、图4、图5所示。 图3 第1施工阶段计算模型 ? 69 ? 收稿日期:2012-08-14

相关文档
最新文档