数学思想方法在教学中应用论文
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学思想方法在教学中的应用
一、什么是数学思想
数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。数学思想是对数学事实与理论经过概括后产生的本质认识;基本数学思想则是体现或应该体现于基础数学中的具有奠基性、总结性和最广泛的数学思想,它们含有传统数学思想的精华和现代数学思想的基本特征,并且是历史地发展着的。通过数学思想的培养,数学的能力才会有一个大幅度的提高。掌握数学思想,就是掌握数学的精髓。
数学方法即用数学语言表述事物的状态、关系和过程,并加以推导、演算和分析,以形成对问题的解释、判断和预言的方法。
一种数学思想的形成绝不是一朝一夕可以做到的,古往今来世人留下的数学思想方法非常丰富,这些数学思想方法有难的但也有容易的,所以,数学思想方法的教学不只是中学、大学教师的事,小学阶段进行数学基础知识的教学时,适时适度渗透数学思想方法,不仅成为一种可能,也成为一种必需。因此,在小学数学课堂中渗透数学思想是十分重要的。
二、重要的数学思想值得在课堂中应用
1、化归思想。化归思想就是将待解决的或者难以解决的问题a 经过某种转化手段,转化为有固定解决模式的或者容易解决的问题b,通过解决问题b达到解决问题a的方法。化归的原则有化未知为已知、化繁为简、化难为易、降维降次、标准化等。
2、数形结合思想。“数无形,少直观;形无数,难入微。”利用“数形结合”可使所要研究的问题化难为易、化繁为简。把代数和几何相结合,例如对几何问题用代数方法解答,对代数问题用几何方法解答,这种方法在解析几何里最常用。例题:有某种浓度的酒精溶液,加1杯水后,浓度变为25%,再加1杯纯酒精后,浓度变为40%,求原来酒精溶液的浓度。
分析:这道题条件中没有原来溶液的容量,浓度一会儿是25%,一会儿又是40%,数量关系看似十分繁杂,难以理解。我在教学中是用下面形象的图形表示其数量关系来引导学生思考的。
25%=1/4,40%=2/5,用△代表1份酒精,用■代表1份水。
加1杯水浓度为25%,即,图示为:△■■■
再加1杯酒精浓度为40%,也即,图示为:△△■■■
由上图很容易得出:
1份酒精、1份水刚好也是1杯酒精、1杯水,如不加1杯水和1杯酒精,原酒精浓度由图示应为:△△■■■-△-■=△■■即原酒精溶液的浓度为1/3,也即33.3%。
3、分类讨论思想。当一个问题因为某种量或图形的情况不同而有可能引起问题的结果不同时,需要对这个量或图形的各种情况进行分类讨论。
4、方程思想。当一个问题可能与某个方程建立关联时,可以构造方程并对方程的性质进行研究以解决这个问题。
例题:六年级学生元旦晚会上教室里挂满了红、黄、绿三种颜
色的彩灯,笑笑、欣欣、童童统计彩灯的数量,笑笑发现红、黄、绿三种颜色的彩灯共65个,欣欣发现红色和绿色彩灯之和比黄色的多1个,而童童发现红色彩灯比绿色的多15个。聪明的小朋友,你能帮三位小朋友计算一下教室中红、黄、绿三种颜色的彩灯各有多少个吗?
分析:设红、黄、绿三种彩灯分别有a、b、c个,则根据题意可得:a+b+c=65,a+c=b+1,a=15+c。通过三个式子发现每个式子中都有a,故可设红色彩灯有x个,于是黄色的就有(x-15)个,绿色的有(x+x-15-1=2x-16)个,于是可列方程
x+(x-15)+(2x-16)=65,解得x=24,即红色彩灯有24个,进而可以得出黄色彩灯有9个、绿色彩灯有32个。
5、转化思想。即将未知的、陌生的、复杂的问题通过演绎归纳转化为已知的、熟悉的、简单的问题。常见的转化方式有:一般特殊转化,等价转化,复杂简单转化,数形转化,构造转化,联想转化,类比转化等。
三、如何渗透数学思想
如何在小学数学教学中渗透数学思想,把握它的可行性是关键。这就要求我们对于每一章每一节,都要考虑如何结合具体内容进行数学思想方法渗透,渗透哪些数学思想方法,怎么渗透,渗透到什么程度,应有一个总体设计,提出不同阶段的具体教学要求。
例如,在概念的教学中可以渗透类比的思想、分类的思想。在法则的归纳、公式的推导、结论的发现过程中,可以渗透类比与联
想、符号化等数学思想方法。在解决实际问题教学中,可以渗透化归思想、数学模型思想等。同时,进行数学思想方法的教学要注意有机结合、自然渗透,要有意识潜移默化地启发学生领悟蕴含于数学知识之中的种种数学思想方法,切忌生搬硬套、和盘托出、脱离实际等适得其反的做法。
1、教师应对教材进行深入研究、潜心挖掘,还应讲究正确的渗透方法。鉴于小学生的认知能力,教师在教学过程中应采用较为直观的方法,例如用图表的方法将数学思想直观化、具体化、形象化,这样就能将十分抽象的数学思想转化为利于学生感知的间接材料。
2、在教学过程中,教师应不失时机地向学生渗透各类数学思想,教师可以在教学过程中利用各种现代教育手段进行讲解并可以通
过举办各类数学讲座来系统地教授并渗透这些数学思想。
3、教师可以在每章教材讲解结束后,即进行复习小结时,从横向和纵向两个方面进行讲解,这样可以使师生双方都从中得到益处,共同努力,不断促进二者的迅速发展。
小学数学教学的目的不仅在于让学生掌握知识,而且在于学习方法,培养数学思维能力,以及良好的品质,促进学生全面发展。良好的数学思维能力,不仅在学习数学时有很大的作用,而且是小学生良好综合素质的体现。因此,培养学生的数学思维能力尤为重要。