等离子体

等离子体
等离子体

LANGMUIR 探针实验

大连理工大学物理系

三束材料改性国家重点实验室

邓新绿编

2001年10月

2003年9月修订

Langmuir 探针实验

朗缪尔探针( Langmuir Probe ) 是等离子体诊断的基本手段之一。为了搞清朗缪尔探针的工作原理,首先让我们来考察一下一根悬浮地插入等离子体中的金属丝会出现什么现象。

一. 插入等离子体内的悬浮金属丝:

如图1所示,真空室内以某种方式建立起了等离子体,金属丝(Metal tip ) 悬浮地插入其中。我们知道,等离子体内电子的质量远比离子的质量小,而其运动速度远比离子高。这一基本事实将导致在悬浮地插在等离子体中的金属丝上会积累相当数量的负电荷,以致产生明显的悬浮负电位。定量分析如下:

根据分子运动论,可知在单位时间内落在金属丝表面单位面积上的粒子数遵循余弦定律:

其中n e 为电子密度,n i 为离子密度,e v 为电子平均热运动速度, i v 为离子平均热运动速度。 (1)、(2)两式两边均乘以电子电荷e ,可得流向金属丝的电子电流密度j e 与离子电流

密度 j i 的表达式:

我们知道i e v v >>,故j e >>j i 。 因此,金属丝刚插入等离子体内的极短时间内,金属丝表面会出现净的负电荷。该负电荷产生的电场排斥电子而吸引正离子。过程平衡时,金属丝的电位为 v f 。 设等离子体空间电位为v sp , 则在 v sp -v f 作用下, j e = j i 。 v f 即为悬浮地插入的金属丝的悬浮电位。 显然, v f

向金属丝飞来的正离子不受鞘层电场的影响;而电子在穿越鞘层时,受到拒斥场的

作用,只有动能能克服这个势垒的那部分电子才能到达金属丝表面。根据玻尔兹曼分布函

图1

()1 (4)

1

e e e v n dt dn =()2 (4)

1

i i i v n dt dn =()3 (4)

1

e e e v en j =()4 (4)

1

i i i v en j =

数,可知能穿过这个势垒的电子浓度为:

其中 n e0 为等离子体区域内的电子浓度。平衡时,j e =j i ,即:

因 n eo =n i ( 设等离子体离子为单电荷离子) ,粒子平均热运动速度为 v =[8kT/(πm)]1/2,故(6) 式可改写为:

以氩等离子体为例,设kTe=2ev ,kT i =0.043ev ,m i /m e =1840x40, 则 v sp -v f =15v 左右。

正离子穿越鞘层获得动能(E i ):

二. Langmuir 单探针的工作原理

如果我们在插入等离子体中的金属丝的末端连接上简单的电路(如图2所示)便构成了 Langmuir 单探针。调节电位器可使探针(即金属丝)的电位由-45V 变到+45V 。假设在调节探针电位的过程中,等离子体的状态保持稳定。对应探针电位由负变到正的每一个电位值,记录下电流表所指示的相应的每一个流过探针的电流值。据此即可得探针I-V 特性曲线(如图3所示)。

现在我们来分析一下Langmuir 单探针的I-V 特性曲线的成因。

为了表述方便起见,我们采用圆盘型的平面探针,并画出了平面探针的鞘层表面(如图4所示)。

由第一节所述的余弦定律可知:单位时间内落在单位鞘层表面积内的电子数与离子数可分别用(1)、(2)两式表示。

至于落到鞘层表面

()()5................................................

exp 0??

?

??

?--

=e f

sp e e kT V V e n n ()()6............................................

exp 0i i e f sp e e v n kT V V e v n =??

?

???--()7.................................ln 2ln ???

?

??=???? ??=-i e e

i e i e e f sp T m T m e kT v v e kT V

V ()()8.............................................ln 2???

?

??=-=i

e e

i e f

sp

i

T m T m e kT

V V

E

的粒子能否落到探针表面,则取决于粒子的种类(正离子还是电子)与鞘层电场的性质(大小与方向)。

下面将单探针I-V 特性曲线分为A 、B 、C 三个区域进行分析:

A 区:饱和离子电流区。在该区,探针电位(V p )远远小于等离子体空间电位(V sp ),即V p <

C 区:饱和电子电流区。与A 区的情形类似,在该区,V p V sp ,此时全部正离子都受鞘层拒斥场的作用不能到达探针表面,只有电子能被探针收集。这些电子也就是到达鞘层表面的那些电子,其数值由(1)式决定。同样,该数值由等离子体的性质(n eo ,e v )决定,而与鞘层电场的大小无关。由(3)式决定的电子电流密度(n e 取n eo 的值)也就是探针所能收集到的最大电子电流密度,称为饱和电子电流密度。将其乘以探针总面积即为探针饱和电子电流。

B 区:过渡区。该区的情形稍为复杂一点。在该区,V p

样的变化规律呢?我们知道,等离子体中电子能量分布函数(EEDF )接近Maxwell 分布。为了方便起见,我们暂时假定电子能量分布为Maxwell 分布(如图5所示)。当V p 变得比V sp 越来越负时,能够克服拒斥场的作用而到达探针表面的电子数也就越来越少。实际上,能够克服拒斥场的作用而到达探针的电子数是对Maxwell 分布函数某一区间的积分。显然,此积分函数具有指数函数的性质。所以,在过渡区探针电流(I p

)具有指数函数的形状。正

因为如此,Langmnir 单探针的I-V 特性函数携带了电子能量分布函数的信息(即电子温度的信息)与等离子体性质的其他信息。

三.由单探针I-V 特性曲线获取等离子体参数的步骤

1、由观察I-V 特性曲线可得等离子体空间电位V sp 与悬浮电位V f

由前面的分析可知,当V p >= V sp 时,探针电流到达电子饱和电流;而当V p < V sp 时,探针电流按指数函数衰减。故在I-V 曲线上会出现一拐点,此拐点对应的横坐标即为等离子体空间电位V sp (实验上拐点有时并不十分明显,其原因后面讨论),I-V 特性曲线与横坐标的交点即为悬浮电位V f 。此处流经探针的电子电流与离子电流大小相等而方向相反。

2、求电子温度

既然在过渡区,探针电流I p 与鞘层电场(V p -V sp )之间是指数函数关系,即

故上式取对数,可得

这就是说,如果将实验测得的I-V 特性曲线取半对数(即纵坐标取对数,变为LnI p ,而横坐标仍为V),得 LnI p =f (V p ),则在过渡区内,LnI p 与V 应呈线性关系,该直线的斜率即为等离子体的电子温度(kT e )的倒数:

3、求电子密度与离子密度

对应等离子体空间电位V sp 的纵坐标即为电子饱和电流I eo ,它的表达式为

其中A p 为探针的表面积,以CM 2为单位;I e0以mA 为单位;kT e 以eV 为单位。由等

离子体的电中性可知:n i =n eo ,故可求得离子密度n i 。n eo 与n i 的单位是CM -3。

4、求电子能量分布函数

()()9...........................................

exp 0??

?

???-=≈-=e sp p e e i e p kT V V e I I I I I ()0

ln ln e p e

sp p I I kT V V e -=-()()

10...........................................................................ln ln 0

e p sp p e I I V V e kT --=

∴)()

11...........................................................................ln ln 2

12

1p p p p e I I V V e kT --=

e p e e p e p e e kT A n v A en A j I 09000107.24

1

-?==

=()

()12.......

..................................................107.3080e p e e kT A I n ?=∴

既然在过渡区探针电流(电子电流)来自于对电子能量分布函数的积分,因此,对实验测得的I-V 特性曲线的过渡区部分求微分即可得到电子的能量分布函数。 所以,由Langmuir 单探针的I-V 特性曲线可求得以下等离子体参教:等离子体空间电位V sp 、悬浮电位V f 、电子温度kT e 、电子密度n e0 、离子密度n i 与电子能量分布函数。

四、实验方法

1、了解单探针的结构及注意事项

实验室自制单探针如图6所示。一般采用高熔点的金属(如钨、钽、铂等)作为探针材料。进入探针的屏蔽体(如玻璃管、陶瓷管等)内后,用电火花点焊法与镍丝连接,经真空密封处理后引出屏蔽体,作为与探针电路的连接头。在探针进入屏蔽体处,给探针套上一适当的铜丝环,并将其推入屏蔽体内,以刚好不露出为宜。这样可保障探针恰好位于屏蔽体内孔的中心,而不与孔边相接触。即使屏蔽体外表面被沉积上了导电膜,探针也不会与导电膜接触。因此能确保探针的有效面积不变。对于等离子体溅射沉积等情况,这是特别重要的。

关于探针的粗细,原则上讲,愈细愈好。因为探针愈细,对等离子体的干扰就愈小。目前已有采用直径为微米量级的探针。但是,太细了,制作起耒很困难。通常,采用直径为零点零几毫米至零点几毫米。长度为若干毫米。

要特别注意保持探针表面的清洁。表面的微小锈斑与污物要仔细加以请除(可用细砂纸打磨后,用丙酮与酒精擦干净;并用电子轰击至白热,再用氩离子轰击适当时间),不然,探针的测量会产生严重的误差。

2、逐点测量单探针的I-V 特性曲线

按照图2连接好电路。启动等离子体并待其稳定后,调节电位器P ,使探针电位由-45V 变到+45V ,每隔1V (在过渡区可每隔0.5V )记录下对应的V p 与I p 的表头指示值。将所测

得的实验数据画在坐标纸上,即得单探针的I-V 特性曲线。再将过渡区的数据画在半对数坐标纸上,可得ln (I p )~ V p 关系图。在此图上,由于实验误差的存在,数据点并不会严格地落在一直线上。我们可以采用最小二乘法将它们拟合成一条直线(图7),然后读出该

直线上任意两点的坐标值

(ln (I p )与V p ),按式(10)算得电子温度kT e 。并按第三节所述步骤求得等离子体的其他参数。

3、用示波器观察并用计算机采集单探针的I-V 特性曲线

用逐点测量法是一项比较费时的工作;要保障在测量I-V 特性过程中等离子体状态完全不变也不是很容易的事,因此势必带来较大的误差。如果采用快速扫描的方法来测量I-V 特性,则不仅可以大大提高工作效率,而且可以显著降低误差。图8所示为用示波器观察并用计算机采集单探针I-V 特性曲线的电路原理图,实验室巳将它做成仪器。请按

仪器说明书连接好探针、示波器及与计算机传输数据的电缆。

在启动等离子体之前,先检查I-V 特性数据采集与观察系统(包括探针、探针电路、示波器与计算机)是否正常。此时可从探针接线头处断开探针连接电缆,用一个2K 的电阻作为负载跨接在该电缆的芯线与屏蔽层之间。将工作模式切换为“内”(此时内置脉冲发生器所输出的脉冲作为锯齿波的触发信号),可从示波器上观察到连续不断的锯齿波,因以一固定电阻(2K )作负载,故电流波形也是连续不断的锯齿波(如图9)。将工作模式切换为“外”(此时以计算机程控脉冲作为锯齿波的触发信号),启动计算机探针数据采集程序,可在计算机屏幕上显示一条过坐标原点的斜直线(两个锯齿波的X-Y 图形)(如图10)。

数据采集系统正常之后,将2K 电阻取下,将探针电缆与探针连接好。启动等离子体,

将工作模式切换为“内” ,从示波器上观察加于探针上的电压波形与探针电流波形。这时电压波形仍是连续不断的锯齿波,而电流波形则是重复出现的单探针的I-V 特性曲线(如图11)。然后,将工作模式切换为“外”(此时以计算机程控脉冲作为锯齿波的触发信号),启动计算机探针数据采集程序,即可将对应一个锯齿波的单探针I-V 特性曲线采集到计算机内。接着可借助计算机程序在计算机屏幕上显示单探针的I-V 特性曲线,借助该程序的数据处理模块可求得等离子体的各个参数。

改变等离子体的放电参数(例如气压、放电电流等),对应该放电参数(例如气压)的每一个值,测量其等离子体参数。然后将不同放电参数下所测得的等离子体参数作图,即可考察等离子体参数随放电参数变化的规律。从而为优化放电参数提供实验依据。这在等离子体基础理论研究与应用研究中都是很重要的。

五、几个问题

1、使用Langmuir 探针的条件: ● 不存在强磁场;

● 电子和离子的平均自由程λ e 、λi 大于探针尺寸,即等离子体是稀薄的; ● 探针周围的空间电荷鞘层的厚度比探针尺寸小;

● 空间电荷鞘层以外的等离子体基本上不受探针干扰,其中的电子和离子速度分

布仍都服从Maxwell 分布;

● 电子和离子打到探针表面后都被完全吸收,而不产生次级电子发射,也不与探

针材料发生反应;

● 被测空间是电中性的等离子体空间。 2、Langmuir 单探针I-V 特性曲线的拐点:

原则上讲,应该有明确的拐点;但是,实际上,由于探针的边缘效应(即有限表面积)等原因,当V p > V sp 之后,V p 继续增大时,鞘层表面积随V p 而增大(图12)。因此落到整个鞘层表面的电子数继续增加。既然落到鞘层表面的电子都能落到探针上,故探针电流I p 也继续增加,使得拐点变得难以确定。这就是用单探针不能准确测定等离子体空间电位V sp 的主要原因。人们发现,发射探针法(包括可直接指示等离子体空间电位的差分发射探针)与激光诱导荧光(LIF )

法等可以较准确地测定V sp 。

3、参考电位

本文以实验室地作为参考电位(零电位),这与实际测量相符,十分方便;但是有关表达式稍显复杂。有的文献以等离子体空间电位作为参考电位, 可使有关表达式大为简化;只是处理测量量时要细心一点,注意把参考电位转换后,再用他们的公式。

六、对实验报告的要求:

1、在搞懂Langmuir 单探针工作原理的基础上,用自己的话(不要照抄讲义)加以阐明。

2、对用逐点测量法测量到的I-V 特性数据进行处理,将结果写入实验报告。

图11 V 与I 的波形

3、改变放电电流的大小,用计算机扫描法测量等离子体电子密度与电子温度相应的

值,作图说明变化规律。

4、通过查参考资料,弄清曲线最小二乘拟合原理。推导出直线最小二乘拟合的表达式。

5、画出计算机采集、显示、处理单探针I-V特性曲线的程序流程图。

参考文献:

1、钱振型主编,固体电子学中的等离子体技术,科学出版社。

2、甄汉生主编,等离子体加工技术,清华大学出版社。

3、Wang En-Yao et al, Rev. Sci. Instrum., 56(4),519,April 1985.

等离子体法处理危险废弃物技术与设备

等离子体法处理危险废弃物技术与设备 等离子体法是处理危险废物的新型技术。日前,力学所工程科学部废物处理技术组建成了等离子体热解处理模拟医疗废物的全套实验室系统。 全套实验室模拟处理装置为中试规模,设计能力最大可达到5吨/日,包括进料子系统、等离子体核心处理设备和完善的尾气后处理子系统。进料子系统主要是柱塞式液压给料机,核心处理设备由等离子体炉、电源设备、测量控制系统、工作气体控制供应系统等设备组成;尾气后处理子系统由尾气急冷器、空气预热器、碳纤维吸附器、烟气脱酸、烟气再热器、尾气燃烧炉、引风机等设备组成。该系统还包括冷却和散热系统等辅助设备。 等离子体法利用电弧放电,可以将裂解温度提高到1500~2000oC,有效打断有机物的化学键,达到很高的摧毁效率,并能避免在处理过程中排放NOx、CO 和二噁英类等在焚烧时生成的有害物质,因此适合处理各类难分解的危险废物,达到近零排放的水平。实验数据显示,等离子体法仅形成少量裂解气体、炭黑和玻璃体,特别有利于二次产物的后处理和无害化,处理一吨废物的电耗约 1200~1500 kWh,低于焚烧多氯联苯等高危废物的能耗和能源成本,产生的可燃性尾气中的能源还可以回收利用,因而也是节能型技术。但是由于技术复杂,成本昂贵,国际上发展速度并不快,主要是用于处理多氯联苯(PCBs)、废农药、焚烧飞灰、医疗废物等有机与无机废物的处置,国内尚没有成熟的商业化产品。 近年来,课题组以交流等离子体弧技术为基础,在处理废塑料、废橡胶、医疗废物、有机废物、化学试剂和电子线路板等实验研究的基础上,承担了国家863计划课题和院知识创新工程方向性重要项目,研制交流等离子体处理医疗废物的成套设备和技术,并于2006年在四川晨光化工研究院建成国内首套工业规模的化工固体危险废物处理系统。 现在,课题组与深圳迈科瑞环境技术有限公司的合作,全面开发等离子体处理危险废物的技术和设备,努力通过走产业化的道路,尽早实现科研成果向生产力的转化。

等离子体-第一部分

等离子体化工导论讲义 前言 等离子体化工是利用气体放电的方式产生等离子体作为化学性生产手段的一门科学。因其在原理与应用方面都与传统的化学方法有着完全不同的规律而引起广泛的兴趣,自20世纪70年代以来该学科迅速发展,已经成为人们十分关注的新兴科学领域之一。 特别是,近年来低温等离子体技术以迅猛的势头在化工合成、材料制备、环境保护、集成电路制造等许多领域得到研究和应用,使其成为具有全球影响的重要科学与工程。例如:先进的等离子体刻蚀设备已成为21世纪目标为0.1μm线宽的集成电路芯片唯一的选择,利用等离子体增强化学气相沉积方法制备无缺陷、附着力大的高品位薄膜将会使微电子学系统设计发生一场技术革命,低温等离子体对废水和废气的处理正在向实际应用阶段过渡,农作物、微生物利用等离子体正在不断培育出新的品种,利用等离子体技术对大分子链实现嫁接和裁剪、利用等离子体实现煤的洁净和生产多种化工原料的煤化工新技术正在发展。可以说,在不久的将来,低温等离子体技术将在国民经济各个领域产生不可估量的作用。 但是,与应用研究的发展相比,被称为年轻科学的等离子体化学的基础理论研究缓慢而且较薄弱,其理论和方法都未达到成熟的地步。例如,其中的化学反应是经过何种历程进行,活性基团如何产生等等。因此,本课程力求介绍这些方面的一些基础理论、研究方法、最新研究成果以及应用工艺。

课程内容安排: 1、等离子体的基本概念 2、统计物理初步 3、等离子体中的能量传递和等离子体的性质 4、气体放电原理及其产生方法 5、冷等离子体中的化学过程及研究方法 6、热等离子体中的化学过程及研究方法 7、当前等离子体的研究热点 8、等离子体的几种工业应用 学习方法: 1、加强大学物理和物理化学的知识 2、仔细作好课堂笔记,完成规定作业 3、大量阅读参考书和科技文献

用微波ECR等离子体溅射法在蓝宝石_0112_晶面上生长ZnO薄膜的研究

研究快讯 用微波ECR 等离子体溅射法在蓝宝石 (0112)晶面上生长Z nO 薄膜的研究Ξ 汪建华 袁润章 (武汉工业大学材料复合新技术国家重点实验室,武汉 430070) 邬钦崇 任兆杏 (中国科学院等离子体物理研究所,合肥 230031) (1998年6月12日收到;1998年11月27日收到修改稿) Ξ国家自然科学基金(批准号:19175046)资助的课题. 蓝宝石上外延生长ZnO 薄膜在表面波和声光器件中有重要的应用.用微波电子回旋共 振(ECR )等离子体溅射法在蓝宝石(0112)晶面上外延生长了ZnO 薄膜,膜无色透明,并且表面光滑,基片温度为380℃,为探索沉积工艺参数对薄膜结构的影响,用XRD 对不同基片温度和沉积速率生长的ZnO 薄膜进行了研究. PACC :0484 1 引言 随着声表面波(SAW )技术的发展,对更高频的SAW 器件的需求日益增加,因而希望有高声速的基片材料,在蓝宝石基片上溅射沉积ZnO 薄膜格外引人注目.如:当膜厚相当于SAW 波长时,则SAW 速率约为6000m/s ,高次模SAW 传播的速度则高达7000m/s 以上[1].这比LiNO 3或石英的SAW 速度大得多.众所周知,用溅射法能在玻璃衬底上生长c 轴取向的ZnO 薄膜,这种膜与衬底构成的层状结构可用于较低频段的SAW 器件.当用于几百MHz 以上的高频波段的薄膜SAW 器件时,若构成器件的压电ZnO 薄膜是多晶结构,则由于传播损耗大,而降低器件性能.这时就要使用单晶ZnO 薄膜[2].用化学气相沉积法生长的薄膜,沉积温度高,膜表面粗糙,用于SAW 器件时需要抛光.将薄膜抛光到有确定的SAW 相速度的一定厚度是很困难的.有文献报道,用射频溅射外延生长ZnO 薄膜,不用抛光工序即可获得光滑的薄膜.但这时使用了掺Li 2CO 3氧化锌陶瓷靶,溅射沉积时,获得的薄膜晶粒大,工艺稳定性和重复性差,制作的薄膜器件传输损耗大,尤其是当Li +离子吸收了空气中的水分时,在薄膜的表面会产生LiOH ,并降低器件的稳定性和可靠性[1,3—5]. 第48卷第5期1999年5月 100023290/1999/48(05)/0955206物 理 学 报ACTA PHYSICA SIN ICA Vol.48,No.5,May ,1999ν1999Chin.Phys.S oc.

等离子体概述

一、等离子体概述 物质有几个状态?学过初中物理的会很快回答固态、液态、气态。其实,等离子态是物质存在的又一种聚集态,称为物质的第四态。它是由大量的自由电子和离子组成,整体上呈现电中性的电离气体。 在一定条件下,物质的各态之间是可以相互转化的,当有足够的能量施予固体,使得粒子的平均动能超过粒子在晶格中的结合能,晶体被破坏,固体变成液体。若向液体施加足够的能量,使粒子的结合键破坏,液体就变成了气体。若对气体分子施加足够的能量,使电子脱离分子或原子的束缚成为自由电子,失去电子的原子成为带正电的离子时,中性气体就变成了等离子体。物质的状态对应了物质中粒子的有序程度,等离子内物质中的粒子有序程度是最差的。相应的,等离子体内的粒子具有较高的能量、较高的温度。实际上,宇宙中99.9%的物质处于等离子态,它是宇宙中物质存在的普遍形式,不过地球上,等离子体多是人造的。 人工如何造出等离子体呢?从上面的论述可以看出,等离子体的能量是很高的,任何物质加热到足够高的温度,都会成为电离态,形成等离子体。在太阳和恒星的内部,都存在着大量的高温产生的等离子体。太阳和恒星的热辐射和紫外辐射能使星际空间的稀薄气体产生电离,形成等离子体,如地球上空的电离层就是这样来的。各种直流、交流、脉冲放电等均可用来产生等离子体。利用激光也可以产生等离子体。 等离子体如何描述?温度。等离子体有两种状态:平衡状态和非平衡状态。等离子体中的带电粒子之间存在库伦力的作用,但是此作用力远小于粒子运动的热运动能。当讨论处于热平衡状态的等离子体时,常将等离子体当做理想气体处理,而忽略粒子间的相互作用。在热平衡状态下,粒子能量服从麦克斯韦分布。每个粒子的平均动能32 E kT =。对于处于非平衡状态下的等离子体,一般认为不同粒子成分各自处于热平衡态,分别用e T 、i T 、n T 表示电子气、离子气和中性气体的温度,并表示各自的平均动能。可以用动力学温度E T (eV )表示等离子体的温度,E T 的单位是能量单位,由粒子的动能公式可得 2133222 E E mv kT T ===,E T 就是粒子的等效能量kT 值(1eV 的能量温度,相应的开氏绝对温度为1T k ==11600K )。 温度是描述等离子体能量的,还有其它的一些概念来表述。(1)高温等离子体,低温等离子体,冷等离子体。高温等离子体也是完全电离体,温度68 10~10K ,核反应、恒星的等离子体是这类。低温等离子体是部分电离体, 463410~10,310~310e i T K T K ==??,电弧等离子体、燃烧等离子体是这种。冷等离子体是410,e i T K T >约等于室温的等离子体。 (2)电离度。强电离等离子体指电离度η>10-4的等离子体,弱电离等离子体η<10-4。η是电离度,0=n n n η+,n 是两种异电荷粒子中任何一种密度,0n 为中性粒子密度。粒子密度是表示单位体积中所含粒子的数目。(3)稠密等离子体和稀薄等离子体。具体区分度不详。

关于等离子体及其研究方法的若干讨论

本科毕业论文 题目:关于等离子体及其研究方法的 若干讨论

目录 1.引言 (3) 2.等离子体的概念与简介 (1) 2.1.等离子体概念的形成 (1) 2.2.现实生活中的等离子体 (1) 3.等离子体的种类 (3) 4.等离子体的特征 (3) 5.等离子体与普通气体的区别 (4) 6.等离子体的运动规律 (4) 7. 等离子体的研究方法 (6) 8.等离子体的主要参量 (7) 8.1.等离子体粒子密度 (7) 8.2.等离子体的温度 (7) 8.3.等离子体振荡频率 (8) 8.4.D EBYE长度 (9) 9.等离子体对现代科学的应用 (12) 10.总结 (133) 11.参考文献 (144) 12.致谢 .......................................... 错误!未定义书签。5

关于等离子体及其研究方法的若干讨论 摘要:等离子体是部分或完全电离的气体按物质聚集态的顺序,等离子体位居固体、液体、气体之后,所以也称为物质的第四态。等离子体不仅与固体、液体不同,而且与普通的由中性原子、分子组成的气体也大不相同。这是因为构成等离子体的带电粒子之间的作用主要是长程的Coulomb力。在本文中主要阐述等离子体的三种研究方法,并推出等离子体的振荡频率和德拜长度。 关键词:等离子体;振荡频率;粒子密度;德拜长度

1.引言 对于常见的三种物质聚集状态,即固态、液态、气态我们比较熟悉。但对高温状态的等离子体和低温状态的超导体则缺乏了解。本文对物质的这种状态做简单的介绍。 等离子体是部分或完全电离的气体按物质聚集态的顺序,等离子体位居固体、液体、气体之后,所以也称为物质的第四态。 等离子体不仅与固体、液体不同,而且与普通的由中性原子、分子组成的气体也大不相同。这是因为构成等离子体的带电粒子之间的作用主要是长程的Coulomb力。 等离子体物理是在20世纪20年代后逐步形成的物理学新分支,它研究等离子体的形成、性质和运动规律。 等离子体物理学的研究方法包括三部分,即粒子轨道理论、磁流体力学和等离子体动力论。 2.等离子体的概念与简介 2.1.等离子体概念的形成 等离子体(plasma)是一种由自由电子和带电离子为主要成分的物质形态,广泛存在于宇宙中,常被视为是物质的第四态,被称为等离子态,或者“超气态”。等离子体具有很高的电导率,与电磁场存在极强的耦合作用。 1928年朗缪尔在第一篇“电离气体中的振荡”论文中首次提出等离子体概念。等离子体又叫做电浆,是部分或完全电离的气体,由大量自由电子和正离子以及中性原子、分子组成。等离子体宏观上是近似电中性的,即所含的正电荷与负电荷几乎处处相等。 任何物质由于温度不同将处于不同的聚集状态。固体加温溶解成为液体,液体加温沸腾成为气体。气体加温到几百上千度仍是气体,但若加温到几千万度、几十万度甚至更高的温度,则不仅分子或原子的运动十分剧烈,而且原子中的电子也已具有相当大的动能,足以摆脱原子核的束缚成为自由电子,于是原子电离,成为自由电子和正离子。这种部分电离或完全电离的气体,就是等离子体。它广泛存在于宇宙中,常被视为是除去固、液、气外,物质存在的第四态。我们在日常生活中也常常遇到等离子体。 2.2.现实生活中的等离子体 看似“神秘”的等离子体,其实是宇宙中一种常见的物质,在太阳、恒星、闪电中都存在等离子体,它占整个宇宙的99%。现在人们已经掌握利用电场和

辉光放电与等离子体

辉光放电与等离子体 1、辉光放电 通常把在电场作用下气体被击穿而导电的物理现象称之为气体放电。气体放电有“辉光放电”和“弧光放电”两种形式。辉光放电又分为“正常辉光放电”与“异常辉光放电”两种,它们是磁控溅射镀膜工艺过程中产生等离子体的基本环节。 辉光放电(或异常辉光放电)可以由直流或脉冲直流靶电源通过气体放电形成,也可以用交流(矩形波双极脉冲中频电源、正弦波中频与射频)靶电源通过真空市内的气体放电产生。 气体放电时,充什么样的工作气体、气压的高低、电流密度的大小、电场与磁场强度的分布与高低、电极的不同材质、形状和位置特性等多种因素都会影响到放电的过程和性质,也会影响到放电时辐射光的性质和颜色。 (1)直流辉光放电 ①在阴-阳极间加上直流电压时,腔体内工作气体中剩余的电子和离子在电场的作用下作定向运动,于是电流从零开始增加; ②当极间电压足够大时,所有的带电离子都可以到达各自电极,这时电流达到某一最大值(即饱和值); ③继续提高电压,导致带电离子的增加,放电电流随之上升;当电极间的放电电压大于某一临界值(点火起辉电压)时,放电电流会突然迅速上升,阴-阳极间电压陡降并维持在一个较低的稳定值上。工作气体被击穿、电离,并产生等离子体和自持辉光放电,这就是“汤生放电”的基本过程,又称为小电流正常辉光放电。 ④磁控靶的阴极接靶电源负极,阳极接靶电源正极,进入正常溅射时,一定是在气体放电伏-安特性曲线中的“异常辉光放电区段”运行。其特点是,随着调节电源输出的磁控靶工作电压的增加,溅射电流也应同步缓慢上升。 (2)脉冲直流辉光放电 脉冲或正弦半波中频靶电源的单个脉冲的气体放电应与直流气体放电伏-安特性曲线异常辉光放电段及之前段的变化规律相符。可以将其视为气体放电伏-安特性在单个脉冲的放电中的复现。脉冲直流靶电源在脉冲期间起辉溅射,在脉冲间隙自然灭辉(因频率较高,肉眼难以分辨)。 溅射靶起辉放电后,当电源的输出脉冲的重复频率足够高时,由于真空腔体内的导电离子还没有完全被中和完毕,第二个(以后)重复脉冲的复辉电压与溅射靶的工作电压接近或相同。当电源输出脉冲的重复频率很低(例如几百HZ以下)或灭弧时间过长(大于100ms以上),

等离子体法发生器

南京万和测控仪表有限公司与洛阳博耐特工程技术有限公司及西安天立能源环保工程技术有限公司精诚合作,是一个强强联合的实体,在研发和制造上属国内领先地位。用户的需求就是我们努力前方向,我们以优质的产品和近在咫尺的服务,迎接用户的选择。 一、等离子体燃烧器 1 、等离子体发生器燃煤原理: 随着等离子体电子源在不同工业领域应用和扩展,对它们的物理研究具有特殊意义。它们尤其在电子束燃煤技术中广泛应用。 在等离子发生器里,利用直流电流将压缩气体电离形成等离子体,在电磁场的作用下该等离子体会稳定定向流动,内含有大量化学活性粒子,如原子、原子团、粒子和电子等,这些粒子正负电荷数值相等,对内为良导体,对外呈中性,其内部有着上万度的高温,用眼睛就可以看见明亮的火炬。 实验室等离子体状态 等离子发生器由线圈、阴极、阳极等组成,等离子载体为压缩空气,阴极材料采用具有高导电率、高导热率、耐氧化的金属材料制成,阳极亦由高导电率、高导热率及抗氧化的金属材料制成,它们均采用水冷冷却方式,以承受电弧的高温冲击 等离子发生器原理图 2、等离子煤粉燃烧器配置: (1) 等离子发生器:产生电功率80~300 Kw的空气等离子体; (2) 直流电源(含整流变压器):将三相380 VAC或厂变6000VAC电源整流成直流电,用于产生等离子体。WHDLZ-250型等离子发生器采用直流电源供电,并且该电源经常工作在低电压、大电流输出状态。因此该电源设计上充分考虑了多种使用工况,具有较大的抗冲击负荷的能力。 (3) 燃烧器:等离子发生器配套使用将点燃煤粉喷进炉膛即一次风管; (4) 控制系统:由PLC、CRT、通信接口和数据总线构成,实现装置的全数字自动控制。 (5) 压缩空气系统:压缩空气是等离子的载体,由空气压缩机、分流器、空气过滤器和电磁阀组成。 (6) 水冷却系统:给等离子发生器、燃烧器冷却,由水箱水磅等组成。 (7) 火焰检测图像探头:用于检测等离子燃烧器工作状态,由摄像机、石英光学传输系统、画面分割器组成。

空间等离子体环境地面模拟实验系统传动与定位装置设计措施

空间等离子体环境地面模拟实验系统传动与定位装置设计方案 西安科宇工贸有限责任公司

目录 1任务概述及功能1 1.1使用条件1 1.2主要功能2 2主要技术指标2 3设计方案3 3.1系统组成及工作原理3 3.2结构设计方案4 3.2.1五维电控运动机构5 3.2.1.1X轴平移台和Y轴平移台5 3.2.1.2A轴旋转台7 3.2.1.3Z轴平移台和B轴旋转台9 3.2.1.4零件材料选择10 3.2.1.5关重件选型设计11 3.2.1.5.1直线导轨11 3.2.1.5.2滚珠丝杠15 3.2.1.5.3光栅尺19 3.2.2三维电控运动机构21 3.2.3底座22 3.2.4载荷安装杆23 3.3电控系统25 3.3.1控制系统原理25 3.3.2电机和驱动器27 3.3.3运动控制器29 3.3.4电控箱30 3.3.5限位保护和复位装置30 3.3.6控制软件31 3.3.6.1软件开发平台31 3.3.6.2功能设计31 3.3.6.3界面设计32 3.4精度测试方法32 3.4.1定位精度测试32 3.4.2重复定位精度测试34 3.5设计结果35 3.6关键技术35 4研制周期及进度安排36

1任务概述及功能 空间等离子体环境地面模拟实验系统传动与定位装置是在空间等离子体环境地面模拟实验中,为测试载荷提供一组六维和一组三维机械运动和伺服控制的装置。任务要求该装置能够安装测试载荷按照用户指令或预先规定程序模式进行机械运动,并实时显示测试载荷的运动状态和位置信息。 该模拟实验是在地面实验舱内进行,要求整个实验过程完全实现自动控制。图11为该装置的整体使用示意图,六维电控运动机构和三维电控运动机构分别装载测试载荷相向安装在底座的两端,并可以正反向安装。通过电缆与实验舱外的控制系统连接,操作人员通过人机接口控制并获取测试载荷的运动状态和位置信息。 图 11 传动与定位装置整体使用示意图 1.1使用条件 该装置要求安装在地面实验舱内使用,实验舱的具体应用条件参数如下: ?实验舱尺寸:φ3000mm?5000mm; ?真空度:5?10-5Pa<极限),5?104Pa<工作); ?温度:-20?C~+50?C; ?等离子体环境:密度109~1012/m3,电子温度0.1~1eV,离子温度0.0 5~0.5 eV; ?磁场:0~1G;

电子回旋共振等离子体及其在材料加工中的应用

电子回旋共振等离子体及其在材料加工中的应用 02级近代物理系等离子体谢会乔PB02203013 摘要 对ECR等离子体放电原理,特点,参数诊断,以及在薄膜沉积和刻蚀方面的应用做一简要调研. 关键词ECR Plasma?lm etching 目录 §1引言1 §2ECR等离子体概述2§2.1ECR放电原理 (2) §2.2ECR等离子体源的优点 (2) §3ECR等离子体实验参数3§3.1等离子体实验参数 (3) §3.2利用双探针对射频偏置ECR–PECVD等离子体参数测量 (3) §3.2.1实验装置 (3) §3.2.2实验结果 (4) §3.3栅网与偏压对ECR等离子体特性影响的测量 (4) §3.3.1实验装置 (4) §3.3.2实验结果 (5) §4气体放电等离子体应用简介5§4.1等离子体表面改性 (6) §4.1.1薄膜沉积 (6) §4.1.2刻蚀 (7) §4.2ECR等离子体活化CVD沉积CN x H y薄膜 (7) §4.3ECR CCl2F2/Ar/O2等离子体放电刻蚀GaAs (8) §5结论9参考文献9 §1引言 20世纪70年代晚期,Suzuki等[1]介绍了电子回旋共振(Electron Cyclotron Resonance:ECR)等离子体可以用在硅的亚显微结构刻蚀上.早期实验表明ECR放电可以在中低压强下(10?4?5×10?3Torr)产生高密度等离子体(N e~1011?1012/cm?3),并同时保持较低的等离子体电势.

在这种处理工艺条件下,离子成为重要的一种化学活性粒子组分,此时离子平均自由程大于离子壳层厚度.所以,通过在基板电极上加入独立的射频(RF)偏压,离子速度大小和方向可控,直接通过基片离子壳打在基片上.离子在穿过离子壳层时没有碰撞,以正常方式撞击基片.通过调整微波能量可以控制离子流,通过调整基片电极偏压可以控制轰击能量,因为离子流垂直于基片表面,通过合适地调整阻挡层,可以在基片上实现方向性很好的基片亚显微刻蚀. 上世纪90年代,ECR等离子体工艺技术已经相当成熟.发展了多种ECR等离子体装置和等离子体源设计思想,并在众多低压等离子体工艺中得到应用[2]. §2ECR等离子体概述 在实验室中,有很多方法和途径可以产生等离子体,如气体放电、激光压缩、射线辐照及热电离等,但最常见和最主要的还是气体放电法.气体放电可分为电晕放电、辉光放电和电弧放电.辉光放电又可以分为直流辉光放电、射频辉光放电和微波放电. 微波放电是将微波能量转换为气体分子的内能,使之激发、电离以产生等离子体的一种放电方式.这种放电虽然与射频放电有许多相似之处,但能量的传输方式却不相同.在微波放电中,通常采用波导管或天线将由微波电源产生的微波耦合到放电管内,放电气体存在的少量初始电子被微波电场加速后,与气体分子发生非弹性碰撞并使之电离.若微波的输出的功率适当,便可以使气体击穿,实现持续放电. 电子回旋共振的诞生和发展直接来源于高功率微波源的实现. §2.1ECR放电原理 图1为微波ECR等离子体放电装置示意图,这种放电装置分为两部分,即放电室和工作室.在放电 图1:微波ECR等离子体放电装置 室中,工作气体中的初始电子在由电流线圈产生的稳恒磁场的作用下,绕磁力线做回旋运动.电子的回 旋频率为 ωce=eB m e .(1) 其中,B为磁感应强度,e为电子电量,m e为电子质量.通过通过适当地调整磁场的空间分布,使得电子回旋频率在沿放电室的轴向上某一位置与微波的圆频率ω一致,那么就会产生共振现象,称为电子回旋共振.对于这种类型的放电装置,微波的频率一般为2.45GHz,那么发生共振的磁感应强度为875高斯.实际上,磁场沿着轴线是发散的.借助于发散磁场的梯度,可以将放电室中产生的等离子体输送到工作室中以供使用[2]. §2.2ECR等离子体源的优点 使用ECR等离子体源有很多显著优点,可以在较低气压下产生比较高密度的等离子体;由于气压较低,离子和活性粒子的平均自由程较长;等离子体电势较低;不需要放置在等离子体内电极,从而不会

直流辉光等离子体系列实验报告-复旦大学物理教学实验中心

直流辉光等离子体系列实验报告 陈金杰合作者张帆指导老师乐永康 (复旦大学物理系上海 200433) 摘要:利用直流辉光等离子体实验装置,获得等离子体。并研究直流低气压放电现象,测量等离子体伏安曲线,测定气体击穿电压验证帕邢定律,利用Langmuir单探针和Langmuir双探针测量等离子体的密度、温度和德拜长度等参数。并就相关现象进行讨论。 关键词:直流辉光等离子体气体放电伏安特性击穿Langmuir探针 引言:关于等离子体 等离子体(Plasma)是一种由大量正、负带电粒子和中性粒子组成的准中性气体,广泛存在于宇宙中,常被视为是物质的第四态,被称为等离子态,或者“超气态”。等离子体具有很高的电导率,与电磁场存在极强的耦合作用。等离子体是由克鲁克斯在1879年发现的,1928年美国科学家欧文·朗缪尔和汤克斯(Tonks)首次将“等离子体(plasma)”一词引入物理学,用来描述气体放电管里的物质形态。严格来说,等离子是具有高位能动能的气体团,等离子的总带电量仍是中性,借由电场或磁场的高动能将外层的电子击出,结果电子已不再被束缚于原子核,而成为高位能高动能的的自由电子。等离子体可通过放电、加热、光激励等方法产生,它有以下特点: [1] (1) 电子温度高于离子温度 由于电子和离子的质量差别悬殊,电子更容易从电场中获得能量,因此电子的平均动能远大于离子的平均动能,即电子和离子有各自独立的不同平衡温度。电子温度比离子温度高得多,而离子温度与等离子体中中性粒子温度一样。引入等离子体中的极板也可以保持较低的温度。等离子体高度电离,是电和热的良导体,具有比普通气体大几百倍的比热容。 (2) 具有丰富的活性粒子 通过与电子的非弹性碰撞,各种粒子得到活性激发。这些活性粒子具有不同能量,可在固体表面发生各种物理和化学效应。所以需要在很高温度下才能进行的化学反应在等离子体中很容易完成。 (3) 存在等离子体鞘层 在等离子体中引入负(或正) 电极,为屏蔽外电势对等离子体的影响,在电极周围形成正(或负) 电荷层,称为等离子体鞘层。以等离子体电位为零电位,则外加电压完全降落在这一鞘层上。进入这一鞘层的正离子受到加速,得到数值上相当于电势能的动能。调节外加负电压的数值,正

等离子体

3.空心阴极效应如何产生的? 两平行平板阴极置于真空设备中,当满足气体点燃电压时,这两个阴极都产生辉光放电,在阴极附近形成阴极暗区,当两阴极靠近或气压降低时,两 个负辉区合并。此时从阴极K1发射出电子在K1 的阴极位降区加速,当它进入阴极K2的阴极位降 区又被减速,因此如果这些电子没有产生电离和 激发,则电子在K1和K2之间来回振动,增加了 电子和气体分子的碰撞几率,可以引起更多的激 发和电离过程。电离密度增加,负辉光强度增加, 这种现象称为空心阴极效应。 4.辉光放电和弧光放电的特点各是? 5.低于和高于共析温度渗氮时组织是如何形成的?1首先是α相被氮所饱和,当氮含量达到饱和极限时,便通过非扩散性的晶格重构方式,形成γ’相;随着时间的延长,当γ’相的氮含量达到饱和极限时,在铁的表层,同样以晶格重构方式形成ε相。γ’相和ε相均按扩散方式长大。因此,纯铁经充分渗氮后,表层组织依次为ε、γ’以及α相 2在高于共析温度时纯铁渗氮,在渗氮温度下生成的组织,由表及里依次为:ε,,γ,α。当缓冷至室温时,低浓度的ε相会析出。γ相在590发生共析转变(),相降低了其饱和含氢量而析出。若快冷时,则含氮奥氏体发生氮马氏体转变,故表层组织依次为:ε,,,α 6.三种渗氮理论分别是什么?1射与沉积理论:离子渗氮时,渗氮层是通过反应阴极溅射而形成。在真空炉体内,工件为阴极,炉体为阳极,加上直流高压后,稀薄气体电离,形成等离子体2子离子理论:在离子渗氮中,虽然溅射很明显,然而不是主要的控制因素,对渗氮起决定作用的是氮氢分子离子化的结果3性氮原子模型:对离子渗氮其作用的实际上是中性氮原子,分子离子的作用是次要的 7.简述离子渗氮的特点:优点a渗氮速度快b渗氮层组织易控制,脆性小c无公害热处理d节约能源、气源e变形小;f适用于不锈钢渗氮。缺点:1不同形状、尺寸、材料的零件混合装炉渗氮时,要使工件温度均匀一致比较困难2.离子渗氮设备较复杂,价格也比气体渗氮炉贵3.准确测定零件温度较困难。 8.简述渗氮过程中脉状组织形成受什么影响?a合金元素在晶界偏聚严重的,则脉状组织明显;b工艺参数的影响:渗氮温度高,保温时间越长,NH3渗氮时炉内;压强越高,均促进脉状组织的形成;c零件棱角的影响:棱角处的脉状组织比其他部位严重得多 9.讨论渗氮材料选择有哪些原则? 1碳钢渗氮效果极差,表面硬度低,硬化层浅。为了提高碳氮的硬化效果,可以采用离子软化工艺2合金结构钢。根据使用条件,选择不同的钢种进行离子渗氮,预先处理一般为调制处理,有的低碳合金钢可以用正火处理。而渗氮温度必须略低于调制回火温度,以保证心部强度不致降低。3工模具渗氮。常用离子渗氮提高工模具使用寿命。4不锈耐酸钢的离子渗氮。离子渗氮可以大幅度提高铁素体型,马氏体型和奥氏体不锈钢的硬度和耐磨性。对于表面要求耐磨,往往由于磨损报废,又要求耐酸蚀的零件可以选用不锈耐酸钢进行离子渗氮处理。5铸铁的离子渗氮。铸铁由于含碳量及含硅量较高,阻止氮的扩散,常采用离子软化的方法渗氮,或选用球墨铸铁合金铸铁,也加快渗速6钛及钛合金的渗氮。由于钛及钛合金具有优异的特性,有广泛的应用。 10.试举例说明如何提高离子渗层的耐蚀性能与耐磨性能: 提高耐蚀性:加入适量的合金元素。提高耐磨性:控制好渗氮温度(较低为宜),选择合适气体比例(减少CO2)。 11.检测渗氮层厚度的方法有哪些?1金相法2硬度梯度法3用X射线衍射法测化合物层厚度4淬火法; 12.检测渗氮层硬度的方法有哪些?1表面硬度:表面硬度的测定以负荷5~10kg的维氏硬度计为准;2硬度梯度:用50~100g现为硬度计进行测定,从边缘往中心每隔一定距离打一硬度值,然后作出硬度分布曲线。 13.元素Al和Cr对渗层有什么影响 1)形成合金氮化物,使硬度、耐磨性增加2)溶入а-Fe中,提高а-Fe的溶氮能力,产生固溶强化作用3)影响氮在铁中的扩散系数及表面吸氮能力4)改变钢的临界点,从而改变渗氮温度

等离子体分析

等离子体分析 摘要:本文介绍了气体放电中的等离子体的特性和等离子体诊断技术,利用单探针法和双探针法对等离子体的一些基本参量进行了测量,并对结果进行分析。文中还简要介绍了等离子体的发展前景。 关键词:等离子体,等离子体诊断,探针法 一. 引言 等离子体作为物质的第四态在宇宙中普遍存在。在实验室中对等离子体的研究是从气体放电开始的。朗缪尔和汤克斯首先引入“等离子体”这个名称。近年来等离子体物理学有了较快发展,并被应用于电力工业、电子工业、金属加工和广播通讯等部门,特别是等离子体的研究,为利用受控热核反应,解决能源问题提供了诱人的前景。 二. 等离子体的物理特性 等离子体定义为包含大量正负带电粒子、而又不出现净空间电荷的电离气体。等离子体有一系列不同于普通气体的特性: (1)高度电离,是电和热的良导体,具有比普通气体大几百倍的比热容。 (2)带正电的和带负电的粒子密度几乎相等。 (3)宏观上是电中性的。 描述等离子体的一些主要参量为: (1)电子温度。它是等离子体的一个主要参量,因为在等离子体中电子碰撞电离是主 要的,而电子碰撞电离与电子的能量有直接关系,即与电子温度相关联。

(2)带电粒子密度。电子密度为,正离子密度为,在等离子体中 。 (3)轴向电场强度。表征为维持等离子体的存在所需的能量。 (4)电子平均动能。 (5)空间电位分布。 本实验研究的是辉光放电等离子体。 辉光放电是气体导电的一种形态。当放电管的压强保持在10~102Pa时,在两电极上加高电压,就能观察到管有放电现象。辉光分为明暗相间的8个区域,在管两个电极间的光强、电位和场强分布如图1所示。8个区域的名称为(1)阿斯顿区,(2)阴极辉区,(3)阴极暗区,(4)负辉区,(5)法拉第暗区,(6)正辉区,(7)阳极暗区,(8)阳极辉区。其中正辉区是等离子区。

低温等离子体的产生方法

辉光放电电晕放电介质阻挡放电射频放电滑动电弧放电射流放电大气压辉光放电次大气压辉光放电 辉光放电(Glow Discharge) 辉光放电属于低气压放电(low pressure discharge),工作压力一般都低于 10mbar,其构造是在封闭的容器內放置两个平行的电极板,利用电子将中性原子和分子激发,当粒子由激发态(excited state)降回至基态(ground state)时会以光的形式释放出能量。电源可以为直流电源也可以是交流电源。每种气体都有其典型的辉光放电颜色(如下表所示),荧光灯的发光即为辉光放电。因此,实验时若发现等离子的颜色有误,通常代表气体的纯度有问题,一般为漏气所至。辉光放电是化学等离子体实验的重要工具,但因其受低气压的限制,工业应用难于连续化生产且应用成本高昂,而无法广泛应用于工业制造中。目前的应用范围仅局限于实验室、灯光照明产品和半导体工业等。 部分气体辉光放电的颜色 Gas He Ne(neon) Ar Kr Xe H2N2O2 Air Cathode Layer red yellow pink --

red-brown pink red pink Negative Glow pink orange dark-blue green orange-green thin-blue blue yellow-white blue Positive Column Red-pink red-brown dark-red blue-purple white-green pink red-yellow red-yellow red-yellow 次大气压下辉光放电(HAPGD)产生低温等离子体 由于大气压辉光放电技术目前虽有报道但技术还不成熟,没有见到可用于工业生产的设备。而次大气压辉光放电技术则已经成熟并被应用于工业化的生产中。次大气压辉光放电可以处理各种材料,成本低、处理的时间短、加入各种气体的气氛含量高、功率密度大、处理效率高。可应用于表面聚合、表面接枝、金属渗氮、冶金、表面催化、化学合成及各种粉、粒、片材料的表面改性和纺织品的表面处理。次大气压下辉光放电的视觉特征呈现均匀的雾状放电;放电时电极两端的电压低而功率密度大;处理纺织品和碳纤维等材料时不会出

低温等离子体的产生方法

低温等离子体的产生方法 辉光放电电晕放电介质阻挡放电射频放电滑动电弧放电射流放电大气压辉光放电次大气压辉光放电 辉光放电(Glow Discharge) 辉光放电属于低气压放电(low pressure discharge),工作压力一般都低于10mbar,其构造是在封闭的容器內放置两个平行的电极板,利用电子将中性原子和分子激发,当粒子由激发态(excited state)降回至基态(ground state)时会以光的形式释放出能量。电源可以为直流电源也可以是交流电源。每种气体都有其典型的辉光放电颜色(如下表所示),荧光灯的发光即为辉光放电。因此,实验时若发现等离子的颜色有误,通常代表气体的纯度有问题,一般为漏气所至。辉光放电是化学等离子体实验的重要工具,但因其受低气压的限制,工业应用难于连续化生产且应用成本高昂,而无法广泛应用于工业制造中。目前的应用范围仅局限于实验室、灯光照明产品和半导体工业等。 部分气体辉光放电的颜色 次大气压下辉光放电(HAPGD)产生低温等离子体 由于大气压辉光放电技术目前虽有报道但技术还不成熟,没有见到可用于工业生产的设备。而次大气压辉光放电技术则已经成熟并被应用于工业化的生产中。次大气压辉光放电可以处理各种材料,成本低、处理的时间短、加入各种气体的气氛含量高、功率密度大、处理效率高。可应用于表面聚合、表面接枝、金属渗氮、冶金、表面催化、化学合成及各种粉、粒、片材料的表面改性和纺织品的表面处理。次大气压下辉光放电的视觉特征呈现均匀的雾状放电;放电时电极两端的电压低而功率密度大;处理纺织品和碳纤维等材料时不会出现击穿和燃烧并且处理温度接近室温。次大气压辉光放电技术目前可用于低温材料、生物材料、异型材料的表面亲水处理和表面接枝、表面聚合、金属渗氮、冶金、表面催化、化学合成等工艺。由于是在次大气压条件下的辉光放电,处理环境的气氛浓度高,电子和

气体放电中等离子体的研究

气体放电中等离子体的研究 091120*** 一、实验目的 1、了解等离子体的产生和有关参数的物理意义 2、采用探针法测量气体放电等离子体的电子温度和电子密度 二、实验原理 1.等离子体及其物理特性 等离子体(又称等离子区)定义为包含大量正负带电粒子、而又不出现净空间电荷的电离气体。也就是说,其中正负电荷密度相等,整体上呈现电中性。等离子体可分为等温等离子体和不等温等离子体,一般气体放电产生的等离子体属不等温等离子体。 等离子体有一系列不同于普通气体的特性: (1)高度电离,是电和热的良导体,具有比普通气体大几百倍的比热容。 (2)带正电的和带负电的粒子密度几乎相等。 (3)宏观上是电中性的。 虽然等离子体宏观上是电中性的,但是由于电子的热运动,等离子体局部会偏离电中性。电荷之间的库仑相互作用,使这种偏离电中性的范围不能无限扩大,最终使电中性得以恢复。偏离电中性的区域最大尺度称为德拜长度λD。当系统尺度L>λD时,系统呈现电中性,当L<λD时,系统可能出现非电中性。 2.等离子体的主要参量 描述等离子体的一些主要参量为: (1)电子温度Te。它是等离子体的一个主要参量,因为在等离子体中电子碰撞电离是主要的,而电子碰撞电离与电子的能量有直接关系,即与电子温度相关联。 (2)带电粒子密度。电子密度为ne,正离子密度为ni,在等离子体中ne≈ni。 (3)轴向电场强度EL。表征为维持等离子体的存在所需的能量。 (4)电子平均动能Ee。 (5)空间电位分布。 此外,由于等离子体中带电粒子间的相互作用是长程的库仑力,使它们在无规则的热运动之外,能产生某些类型的集体运动,如等离子振荡,其振荡频率Fp称为朗缪尔频率或等离子体频率。电子振荡时辐射的电磁波称为等离子体电磁辐射。 3.稀薄气体产生的辉光放电 本实验研究的是辉光放电等离子体。 辉光放电是气体导电的一种形态。当放电管内的压强保持在10~102Pa时,在两电极上加高电压,就能观察到管内有放电现象。辉光分为明暗相间的8个区域,在管内两个电极间的光强、电位和场强分布如图2.3-1所示。8个区域的名称为(1)阿斯顿区,(2)阴极辉区,(3)阴极暗区,(4)负辉区,(5)法拉第暗区,(6)辉区(即正辉柱),(7)阳极暗区,(8)阳极辉

等离子体的生成方式

本章主要内容
第6章 等离子体的生成方法
6.1 6.2 6.3 6.4 6.5 各种直流放电方法与放电模式 辉光放电与低温等离子体 电弧放电与热等离子体 高频放电产生等离子体 微波放电产生等离子体

6.1 各种直流放电方法与放电模式
?直流放电法
– 冷阴极放电 – 热阴极放电 – 空心阴极放电 – 磁场辅助放电(磁控管放电)
" 直流放电的特征:
1. 电极上所加电压在极性上是恒定的,正电位端为阳极、负电位为阴极; 2. 等离子体的生成与维持主要通过阴极鞘层中的电子加速和等离子体中的 焦耳加热来实现;


? 冷阴极放电与热阴极放电的区别
– 冷阴极放电依靠阴极的二次电子发射来维持放 电,热阴极依靠阴极本身的热电子发射来维持放 电; – 热阴极放电需要较高的阴极温度 (1000 ̄3000oC),但在低气压(如0.1Pa)下 仍能维持放电; – 冷阴极放电需要较高的着火电压与放电维持电压 (用于加速离子),而热阴极放电的放电维持电 压较低; – 冷阴极放电器件不需要加热灯丝有较长的寿命, 且节能,热阴极放电器件有较高的功率;

? 空心阴极放电的原理与优点
– 阴极面积大,易于产生较高的电流密度,从而 得到高密度等离子体; – 空心阴极放电的阴极属冷阴极,依靠二次电子 发射维持放电; – 空心阴极有利于提高电离效率
? 径向电子运动在一定条件下可以维持很长的寿命, 从而增加其参与电离的次数(条件:平均自由程大 于圆筒半径,阴极表面的鞘层厚度小于圆筒半径, 电子在另一侧鞘层内被反射) ? 阳极面积小,可以减少阳极对电子的吸收,加强放 电;

ECR等离子体08

电子回旋共振等离子体 (Electron CyclotronResonance,ECR) ●ECR等离子体源发展历史: (1)微波电源的发展 1921:磁控管 1939:速调管 (2)二战中微波技术的迅速发展 雷达 (3)微波灶的普及 1960-1970 微波电源价格大幅度下降 (4)1970年代前期:高温核聚变等离子体微波加热 后期:日本,捷克低温等离子体应用(5)1980 集成电路芯片刻蚀加工: 低气压高密度等离子体源竞争 ECR,ICP.Helicon. Hitachi, Astex. ●ECR等离子体源结构:

微波电子回旋共振加热原理 (a )微波ECR 等离子体内的有效电场 B 0 ≠0 ()()??? ?????+-+++=2222222112~c c c c c eff v v v E E ωωωω [对比] B 0=0 2 2222 ~c c eff v v E E +=ω 特性 电子回旋频率附近,击穿电场显著降低。 实验结果:

回旋运动角频率ωce= eB0/m e =ωwave (b)ECRplasma 中微波传输及吸收的主要特性 ---微波ECR 等离子体为各向异性介质,沿磁场方向传播的TE 波将分为右旋偏振波和左旋偏振波,色散关系为:

n2R=1-(ω2pe/ (ω - ωce)ω) n2L=1-(ω2pe/ (ω + ωce)ω) 右旋波的共振和截止条件为: ωce/ω =1 (共振条件: n R =∞) ω2pe/ω2=1-ωce/ ω(截止条件: n R =0) ----微波不同馈入模式的结果 低场馈入:图中路径a-----> 右旋波在低密度区截止(对应 的临界密度n crit= n c (1 - ωce/ω) ----->低密度 高场输入:图中路径b,没有高密度截止------>高密度运行条件

气体放电中等离子体的研究实验报告 南京大学

南京大学物理系实验报告 题目实验2.3 气体放电中等离子体的研究 姓名朱瑛莺 2014年4月4日学号 111120230 一、引言 等离子体作为物质的第四态在宇宙中普遍存在。在实验室中对等离子体的研究是从气体放电开始的。朗缪尔和汤克斯首先引入“等离子体”这个名称。近年来等离子体物理学有了较快发展,并被应用于电力工业、电子工业、金属加工和广播通讯等部门,特别是等离子体的研究,为利用受控热核反应,解决能源问题提供了诱人的前景。 二、实验目的 1、了解气体放电中等离子体的特性。 2、利用等离子体诊断技术测定等离子体的一些基本参量。 三、实验原理 1、等离子体及其物理特性 等离子体有一系列不同于普通气体的特性: (1)高度电离,是电和热的良导体,具有比普通气体大几百倍的比热容。(2)带正电的和带负电的粒子密度几乎相等。 (3)宏观上是电中性的。 2、等离子体的主要参量 描述等离子体的一些主要参量为: (1)电子温度Te。它是等离子体的一个主要参量,因为在等离子体中电子碰撞电离是主要的,而电子碰撞电离与电子的能量有直接关系,即与电子温度相关联。 (2)带电粒子密度。电子密度为n e ,正离子密度为n i ,在等离子体中n e ≈n i 。 (3)轴向电场强度E L 。表征为维持等离子体的存在所需的能量。 (4)电子平均动能Ee 。 (5)空间电位分布。 3、稀薄气体产生的辉光放电 本实验研究的是辉光放电等离子体。 辉光放电是气体导电的一种形态。当放电管内的压强保持在10-102Pa时,在两电极上加高电压,就能观察到管内有放电现象。辉光分为明暗相间的8个区域。8个区域的名称为(1)阿斯顿区,(2)阴极辉区,(3)阴极暗区,(4)负辉区,(5)法拉第暗区,(6)正辉区(即正辉柱),(7)阳极暗区,(8)阴极辉区。 如图1所示,其中正辉区是我们感兴趣的等离子区。其特征是:气体高度电离;电场强度很小,且沿轴向有恒定值。这使得其中带电粒子的无规则热运动胜过它们的定向运动。所以它们基本上遵从麦克斯韦速度分布律。由其具体分布可得到一个相应的温度,即电子温度。但是,由于电子质量小,它在跟离子或原子作弹性碰撞时能量损失很小,所以电子的平均动能比其他粒子的大得多。这是一种非平衡状态。因此,虽然电子温度很高(约为105K),但放电气体的整体温

相关文档
最新文档