(4)收益率
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5万元的收入。假设投资者A所要求的年收益率为7%,投 资者B所要求的年收益率为8%,试通过净现值法和收益率
法分别分析投资者A和投资者B的投资决策。
解:(1)该项目的净现值为 20 5 a5| 按A所要求的收益率7%计算,净现值为0.5万元,大于
零,可投资。
按B所要求的收益率8%计算,净现值为 –0.036万元, 小于零,不可投资。
The cash flow of the interests is
So, the future value at time 20 of this cahsflow is
26
Exercise: • At time t = 0, Sebastian invests 2000 in a fund earning 8% convertible quarterly, but payable annually. • He reinvests each interest payment in individual separate funds each earning 9% convertible quarterly, but payable
价值方程:
1000(1 i)10 2152.85
i=7.97%
18
Exercise • Mary invests 1000 at the end of each year for 5 years at an annual effective rate of 9%, and reinvests the interest at an annual effective rate of 9%. At the end of 5 years, her investment has value of X. • John invests 1000 at the beginning of each year for 5 years at an annual effective rate of 10% and reinvests the interest at an annual effective rate of 8%.At the end of 5 years, his
investment has value Y .
• Calculate Y − X.
19
Solution:
• The future value at time 5 of Mary’s investments is1000s5 9% 5984.71
First,we find the balance in John’s account:
7
Solution:
Equate net present values:
8
收益率的唯一性 例(不存在): R0 100, R1 230, R2 133 ,求收益率。 解: 净现值为
NPV (i) 100 230v 133v2
(1 i)2 2.3(1 i) 1.33 0
the same fund at time 10. • The fund credits interest at an annual effective rate of i. • Interest is payable annually and reinvested at an annual effective rate of 0.75i. • At time 20, the accumulated amount of the reinvested interest
(1)无需再投资,收益率为 i=9%
(2)所有付款在第10年末的累积值为
1000 90s10|0.07 1000 90(13.8164) 2243.48
价值方程:
1000(1 i)10 2243.48 i 8.42%
17
(3)所有付款在第10年末的累积值为
1000 s10|0.07 (155.82)(13.8164) 2152.88 a10|0.09
的利率 i 称为收益率(yield rate)或 内部报酬率 (internal rate of return,IRR)
资金流入的现值与资金流出的现值之差就是净现值,
所以收益率也是使得净现值为零的利率:
NPV (i) vt Rt 0
t 0 n
收益率越大,表示项目的收益越高。
4
例: 如果期初投资20万元,可以在今后的5年内每年末获得
由于 2.32 4 1.33 0.03 ,因此该方程无实数解,不存
在收益率。
9
100
230
132
Example(不唯一):Consider a transaction in which a person makes payments of $100 immediately and $132 at the end of two years in exchange for a payment in return of $230 at the end of one year. 解:价值方程为 100 132v2 230v
t 2
5
投资项目的资金流出和资金流入
资金净流 入的累积 值 –10.00 –10.91 –8.43 –6.17 –4.12
年度
资金流出
资金流入 资金净流入R t
0 1 2 3 4 5 6
合计
10 1 1 1 1 1
15
4 4 4
4 4 20
10 1 3 3 3 3 4 5
–2.26 0
14
2. 再投资收益率
12
收益率唯一性的条件 准则一:计算资金净流入,如果资金净流入只改变过一次 符号,收益率将是唯一的。 准则二:用收益率计算资金净流入的累积值 ,如果始终 为负,直至在最后一年末才为零,那么这个收益率就是唯 一的。 (见下页例,收益率为9.98396% )
13
10 v 3 vt 4v 6 0
收益率
Yield Rate
孟生旺 中国人民大学统计学院
http://blog.sina.com.cn/mengshw
1
主要内容
• 现金流分析 – 净现值 – 收益率 • 再投资收益率 • 基金的利息度量 – 币值加权收益率 – 时间加权收益率 • 收益分配 – 投资组合法 – 投资年度法
2
1. 现金流分析
多重收益率:
i 10% or i 20%
(下图)
净现值:
100 230(1 i)1 132(1 i) 2
11
f -0.6
0.05
-0.4
-0.2
0.0
0.2
0.10
0.15 i
0.20
0.25
要求10%以下的收益率,净现值小于零,项目不可行。 要求10%~20%的收益率,净现值大于零,项目又是可行的! 要求20%以上的收益率,净现值小于零,项目又不可行。
15
wenku.baidu.com
例:有一笔1000万元的贷款,期限为10年,年实际利率为 9%, 有下面三种还款方式: 本金和利息在第10年末一次还清; 每年末偿还当年的利息,本金在第10年末归还。
在10年内每年末偿还相同的金额。
假设偿还给银行的款项可按7%的利率再投资,试比较在这 三种还款方式下银行的年收益率。
16
解:
21
Solution :
Hence, the interest payments are:
k = 10.51%
( Is)n |
sn | n i
22
Exercise:
• Eric deposits 12 into a fund at time 0 and an additional 12 into
问题:已知一个项目的现金流,如何评价其收益的好坏? 方法一:净现值法(net present value,NPV)
NPV (i) vt Rt 资金流入的现值-资金流出的现值
t 0 n
净现值大于零,表示项目有利可图。 净现值越大,表示项目的收益越好。
3
方法二:收益率法
当资金流入的现值与资金流出的现值相等时,所对应
payments is equal to 64.
• Calculate i, i > 0.
23
The future value at time 20 of this cash flow is
i = 9.57%
24
Exercise: • Victor invests 300 into a bank account at the beginning of each year for 20 years. • The account pays out interest at the end of every year at an annual effective interest rate of i . • The interest is reinvested at an annual effective rate of (i/2). • The yield rate on the entire investment over the 20 year period is 8% annual effective. • Determine i .
Hence, the interest payments John gets are:
The accumulation of these interest payments at time 5 is:
100( Is)5 8%
s5 0.08 5 0.05
1669.91
The total accumulation of John’s investments is 6669.91. •Hence, the difference is 6669.91 − 5984.71 = 685.2.
20
Exercise: • Payments of 1000 are invested at the end of each year for 5 years. • The payments earn interest at an annual effective rate of 10%. • The interest can be reinvested at an annual effective rate of 6% in the first 4 years and at an annual effective rate of k there after. • The amount in the fund at the end of 5 years is 6090. • Calculate k.
100(1 i )2 132 230(1 i ) (1 i) 2 2.3(1 i) 1.32 0
(1 i) 1.1(1 i) 1.2 0
i 10% or i 20%
10
多重收益率情况下的净现值(续前例)
100 230
132
5
(2)如果令净现值等于零,即 20 5 a5| 0
可以计算出该项目的收益率为7.93%,
大于A所要求的收益率(7%),可行 小于B所要求的收益率(8%),不可行
6
Example
• Project P requires an investment of 4000 at time 0. The investment pays 2000 at time 1 and 4000 at time 2. • Project Q requires an investment of x at time 2. The investment pays 2000 at time 0 and 4000 at time 1. The net present values of the two projects are equal at an interest rate of 10%. • Calculate x.
25
Solution: Since the yield rate on the entire investment over the 20 year period is 8% annual effective, the accumulated value at the end of 20 years is
再投资:投资收入按新的利率进行投资。
例:考虑两种可选的投资项目 A)投资5年,每年的利率为9%
B)投资10年,每年的利率为8%
如果两种投资在10年期间的收益无差异,计算项目A在 5年后的再投资收益率应为多少?
(1 0.09)5 (1 i)5 (1 0.08)10
i 7.01%
法分别分析投资者A和投资者B的投资决策。
解:(1)该项目的净现值为 20 5 a5| 按A所要求的收益率7%计算,净现值为0.5万元,大于
零,可投资。
按B所要求的收益率8%计算,净现值为 –0.036万元, 小于零,不可投资。
The cash flow of the interests is
So, the future value at time 20 of this cahsflow is
26
Exercise: • At time t = 0, Sebastian invests 2000 in a fund earning 8% convertible quarterly, but payable annually. • He reinvests each interest payment in individual separate funds each earning 9% convertible quarterly, but payable
价值方程:
1000(1 i)10 2152.85
i=7.97%
18
Exercise • Mary invests 1000 at the end of each year for 5 years at an annual effective rate of 9%, and reinvests the interest at an annual effective rate of 9%. At the end of 5 years, her investment has value of X. • John invests 1000 at the beginning of each year for 5 years at an annual effective rate of 10% and reinvests the interest at an annual effective rate of 8%.At the end of 5 years, his
investment has value Y .
• Calculate Y − X.
19
Solution:
• The future value at time 5 of Mary’s investments is1000s5 9% 5984.71
First,we find the balance in John’s account:
7
Solution:
Equate net present values:
8
收益率的唯一性 例(不存在): R0 100, R1 230, R2 133 ,求收益率。 解: 净现值为
NPV (i) 100 230v 133v2
(1 i)2 2.3(1 i) 1.33 0
the same fund at time 10. • The fund credits interest at an annual effective rate of i. • Interest is payable annually and reinvested at an annual effective rate of 0.75i. • At time 20, the accumulated amount of the reinvested interest
(1)无需再投资,收益率为 i=9%
(2)所有付款在第10年末的累积值为
1000 90s10|0.07 1000 90(13.8164) 2243.48
价值方程:
1000(1 i)10 2243.48 i 8.42%
17
(3)所有付款在第10年末的累积值为
1000 s10|0.07 (155.82)(13.8164) 2152.88 a10|0.09
的利率 i 称为收益率(yield rate)或 内部报酬率 (internal rate of return,IRR)
资金流入的现值与资金流出的现值之差就是净现值,
所以收益率也是使得净现值为零的利率:
NPV (i) vt Rt 0
t 0 n
收益率越大,表示项目的收益越高。
4
例: 如果期初投资20万元,可以在今后的5年内每年末获得
由于 2.32 4 1.33 0.03 ,因此该方程无实数解,不存
在收益率。
9
100
230
132
Example(不唯一):Consider a transaction in which a person makes payments of $100 immediately and $132 at the end of two years in exchange for a payment in return of $230 at the end of one year. 解:价值方程为 100 132v2 230v
t 2
5
投资项目的资金流出和资金流入
资金净流 入的累积 值 –10.00 –10.91 –8.43 –6.17 –4.12
年度
资金流出
资金流入 资金净流入R t
0 1 2 3 4 5 6
合计
10 1 1 1 1 1
15
4 4 4
4 4 20
10 1 3 3 3 3 4 5
–2.26 0
14
2. 再投资收益率
12
收益率唯一性的条件 准则一:计算资金净流入,如果资金净流入只改变过一次 符号,收益率将是唯一的。 准则二:用收益率计算资金净流入的累积值 ,如果始终 为负,直至在最后一年末才为零,那么这个收益率就是唯 一的。 (见下页例,收益率为9.98396% )
13
10 v 3 vt 4v 6 0
收益率
Yield Rate
孟生旺 中国人民大学统计学院
http://blog.sina.com.cn/mengshw
1
主要内容
• 现金流分析 – 净现值 – 收益率 • 再投资收益率 • 基金的利息度量 – 币值加权收益率 – 时间加权收益率 • 收益分配 – 投资组合法 – 投资年度法
2
1. 现金流分析
多重收益率:
i 10% or i 20%
(下图)
净现值:
100 230(1 i)1 132(1 i) 2
11
f -0.6
0.05
-0.4
-0.2
0.0
0.2
0.10
0.15 i
0.20
0.25
要求10%以下的收益率,净现值小于零,项目不可行。 要求10%~20%的收益率,净现值大于零,项目又是可行的! 要求20%以上的收益率,净现值小于零,项目又不可行。
15
wenku.baidu.com
例:有一笔1000万元的贷款,期限为10年,年实际利率为 9%, 有下面三种还款方式: 本金和利息在第10年末一次还清; 每年末偿还当年的利息,本金在第10年末归还。
在10年内每年末偿还相同的金额。
假设偿还给银行的款项可按7%的利率再投资,试比较在这 三种还款方式下银行的年收益率。
16
解:
21
Solution :
Hence, the interest payments are:
k = 10.51%
( Is)n |
sn | n i
22
Exercise:
• Eric deposits 12 into a fund at time 0 and an additional 12 into
问题:已知一个项目的现金流,如何评价其收益的好坏? 方法一:净现值法(net present value,NPV)
NPV (i) vt Rt 资金流入的现值-资金流出的现值
t 0 n
净现值大于零,表示项目有利可图。 净现值越大,表示项目的收益越好。
3
方法二:收益率法
当资金流入的现值与资金流出的现值相等时,所对应
payments is equal to 64.
• Calculate i, i > 0.
23
The future value at time 20 of this cash flow is
i = 9.57%
24
Exercise: • Victor invests 300 into a bank account at the beginning of each year for 20 years. • The account pays out interest at the end of every year at an annual effective interest rate of i . • The interest is reinvested at an annual effective rate of (i/2). • The yield rate on the entire investment over the 20 year period is 8% annual effective. • Determine i .
Hence, the interest payments John gets are:
The accumulation of these interest payments at time 5 is:
100( Is)5 8%
s5 0.08 5 0.05
1669.91
The total accumulation of John’s investments is 6669.91. •Hence, the difference is 6669.91 − 5984.71 = 685.2.
20
Exercise: • Payments of 1000 are invested at the end of each year for 5 years. • The payments earn interest at an annual effective rate of 10%. • The interest can be reinvested at an annual effective rate of 6% in the first 4 years and at an annual effective rate of k there after. • The amount in the fund at the end of 5 years is 6090. • Calculate k.
100(1 i )2 132 230(1 i ) (1 i) 2 2.3(1 i) 1.32 0
(1 i) 1.1(1 i) 1.2 0
i 10% or i 20%
10
多重收益率情况下的净现值(续前例)
100 230
132
5
(2)如果令净现值等于零,即 20 5 a5| 0
可以计算出该项目的收益率为7.93%,
大于A所要求的收益率(7%),可行 小于B所要求的收益率(8%),不可行
6
Example
• Project P requires an investment of 4000 at time 0. The investment pays 2000 at time 1 and 4000 at time 2. • Project Q requires an investment of x at time 2. The investment pays 2000 at time 0 and 4000 at time 1. The net present values of the two projects are equal at an interest rate of 10%. • Calculate x.
25
Solution: Since the yield rate on the entire investment over the 20 year period is 8% annual effective, the accumulated value at the end of 20 years is
再投资:投资收入按新的利率进行投资。
例:考虑两种可选的投资项目 A)投资5年,每年的利率为9%
B)投资10年,每年的利率为8%
如果两种投资在10年期间的收益无差异,计算项目A在 5年后的再投资收益率应为多少?
(1 0.09)5 (1 i)5 (1 0.08)10
i 7.01%