高中数学导数的计算精选题目(附答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学导数的计算精选题目(附答案)
(1)基本初等函数的导数公式
(2)导数运算法则
①[f(x)±g(x)]′=f′(x)±g′(x);
②[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);
#
当g(x)=c时,[cf(x)]′=cf′(x).
③⎣⎢⎡⎦⎥⎤
f (x )
g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).
(3)复合导数
复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.
1.求下列函数的导数: (1)y =10x ; (2)y =lg x ; (3)y =log 1
2x ;
!
(4)y =4
x 3;
(5)y =⎝ ⎛⎭⎪⎫sin x
2+cos x 22-1.
2.求下列函数的导数: (1)y =⎝ ⎛⎭⎪⎫1e x ;
(2)y =⎝ ⎛⎭⎪⎫110x
;
(3)y =lg 5; (4)y =3lg 3
x ; (5)y =2co S 2x
2-1.
/
3.(1)y =x 3·e x ;
(2)y =x -S i n x 2co S x
2; (3)y =x 2+log 3x; (4)y =e x +1e x -1
.
4.求下列函数的导数: (1)y =cos x x ; (2)y =xS i n x +x ;
(3)y =
1+x 1-x +1-x
1+x
; …
(4)y =lg x -1
x 2.
5.点P 是曲线y =e x 上任意一点,求点P 到直线y =x 的最小距离. 6.求过曲线y =co S x 上点P ⎝ ⎛⎭
⎪⎫
π3,12且与曲线在这点处的切线垂直的直线方
程.
7.求下列函数的导数. (1)y =1-2x 2; (2)y =e S i n x ; (3)y =S i n ⎝ ⎛
⎭⎪⎫2x +π3;
(4)y =5log 2(2x +1)
;
8.求下列函数的导数.
(1)f (x )=(-2x +1)2; (2)f (x )=l n (4x -1); (3)f (x )=23x +2; (4)f (x )=5x +4; (5)f (x )=S i n ⎝ ⎛⎭⎪⎫3x +π6; (6)f (x )=co S 2x .
9.求下列函数的导数.
&
(1)y =x 1+x 2;
(2)y =x co S ⎝ ⎛
⎭⎪⎫2x +π2S i n ⎝ ⎛⎭⎪⎫2x +π2.
10.求下列函数的导数. (1)y =S i n 2x
3; (2)y =S i n 3x +S i n x 3; (3)y =1
1-x 2;
(4)y =x l n (1+x ).
11. 设f (x )=l n (x +1)+x +1+ax +b (a ,b ∈R ,a ,b 为常数),曲线y =f (x )
与直线y =3
2x 在(0,0)点相切.求a ,b 的值.
[
12.曲线y =e -2x +1在点(0,2)处的切线与直线y =0和y =x 围成的三角形的
面积为( )
A.13
B.12
C.2
3 D .1
参考答案:
1.解: (1)y ′=(10x )′=10x l n 10. (2)y ′=(lg x )′=1
x ln 10.
(3)y ′=(log 12x )′=1x ln 12=-1
x ln 2.
(4)y ′=(4
x 3)′=(x 34)′=34x -14=344x .
(5)∵y =⎝ ⎛⎭
⎪⎫sin x
2+cos x 22-1
?
=S i n 2x 2+2S i n x 2co S x 2+co S 2x
2-1 =S i n x ,
∴y ′=(S i n x )′=co S x .
2.解:(1)y ′=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1e x ′=⎝ ⎛⎭⎪⎫1e x l n 1
e =-1e x =-e -x .
(2)y ′=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫110x ′=⎝ ⎛⎭⎪⎫
110x l n 110=-ln 1010x
=-10-x l n 10.
(3)∵y =lg 5是常数函数,∴y ′=(lg 5)′=0. (4)∵y =3 lg 3
x =lg x ,∴y ′=(lg x )′=1x ln 10.
·
(5)∵y =2co S 2x
2-1=co S x ,∴y ′=(co S x )′=-S i n x .
3.解: (1)y ′=(x 3)′e x +x 3(e x )′=3x 2e x +x 3e x =x 2(3+x )e x . (2)∵y =x -12S i n x ,∴y ′=x ′-12(S i n x )′=1-1
2co S x . (3)y ′=(x 2+log 3x )′=(x 2)′+(log 3x )′=2x +1
x ln 3. (4)y ′=(e x +1)′(e x -1)-(e x +1)(e x -1)′
(e x -1)2
=e x (e x -1)-(e x +1)e x (e x -1)2=-2e x (e x -1)2
.
4.解:(1)y ′=⎝ ⎛⎭⎪⎫
cos x x ′=(cos x )′·x -cos x ·(x )′x 2
=
-x ·sin x -cos x x 2=-x sin x +cos x
x 2
.
:
(2)y ′=(xS i n x )′+(x )′=S i n x +x co S x +
12x
.
(3)∵y =(1+x )21-x +(1-x )21-x =2+2x 1-x =4
1-x -2,
∴y ′=⎝ ⎛⎭⎪⎫41-x -2′=-4(1-x )′(1-x )2=4(1-x )2.
(4)y ′=⎝ ⎛⎭⎪⎫lg x -1x 2′=(lg x )′-⎝ ⎛⎭⎪⎫
1x 2′
=1x ln 10+2
x 3. 5.解: