接地变及消弧线圈要点

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变电所设计中接地变、消弧线圈及自动补偿装置原理和

选择

北极星电力网技术频道作者: 2009-7-1 13:12:49 (阅2967次)

所属频道: 电网关键词: 消弧线圈中性点不接地

摘要:本文分析了10kV中性点不接地系统的特点,以及系统对地电容电流超标的危害,给出了电容电流的计算方法,对传统消弧线圈接地系统在运行中存在的问题进行了简要分析,重点阐述了自动跟踪消弧线圈成套装置的工作原理和性能特点,以及有关技术参数的选择和配置。

1、问题提出

随着城市建设发展的需要和供电负荷的增加,许多地方正在城区建设110/10kV终端变电所,一次侧采用电压110kV进线,随着城网改造中杆线下地,城区10kV出线绝大多数为架空电缆出线,10kV 配电网络中单相接地电容电流将急剧增加,根据国家原电力工业部《交流电气装置的过电压保护和绝缘配合》规定,3—66KV系统的单相接地故障电容电流超过10A时,应采用消弧线圈接地方式。一般的110/10kV变电所,其变压器低压侧为△接线,系统低压侧无中性点引出,因此,在变电所设计中要考虑10kV接地变、消弧线圈和自动补偿装置的设置。

2、10kV中性点不接地系统的特点

选择电网中性点接地方式是一个要考虑许多因素的问题,它与电压等级、单相接地短路电流数值、过电压水平、保护配置等有关。并

直接影响电网的绝缘水平、系统供电的可靠性和连续性、主变压器和发电机的安全运行以及对通信线路的干扰。10kV中性点不接地系统(小电流接地系统)具有如下特点:当一相发生金属性接地故障时,接地相对地电位为零,其它两相对地电位比接地前升高√3倍,一般情况下,当发生单相金属性接地故障时,流过故障点的短路电流仅为全部线路接地电容电流之和其值并不大,发出接地信号,值班人员一般在2小时内选择和排除接地故障,保证连续不间断供电。

3、系统对地电容电流超标的危害

实践表明中性点不接地系统(小电流接地系统)也存在许多问题,随着电缆出线增多,10kV配电网络中单相接地电容电流将急剧增加,当系统电容电流大于10A后,将带来一系列危害,具体表现如下:(1)当发生间歇弧光接地时,可能引起高达3.5倍相电压(见参考文献1)的弧光过电压,引起多处绝缘薄弱的地方放电击穿和设备瞬间损坏,使小电流供电系统的可靠性这一优点大受影响。

(2)配电网的铁磁谐振过电压现象比较普遍,时常发生电压互感器烧毁事故和熔断器的频繁熔断,严重威胁着配电网的安全可靠性。

(3)当有人误触带电部位时,由于受到大电流的烧灼,加重了对触电人员的伤害,甚至伤亡。

(4)当配电网发生单相接地时,电弧不能自灭,很可能破坏周围的绝缘,发展成相间短路,造成停电或损坏设备的事故;因小动物造成单相接地而引起相间故障致使停电的事故也时有发生。

(5)配电网对地电容电流增大后,对架空线路来说,树线矛盾比较突出,尤其是雷雨季节,因单相接地引起的短路跳闸事故占很大比例。

4、单相接地电容电流的计算

4.1 空载电缆电容电流的计算方法有以下两种:

(1)根据单相对地电容,计算电容电流(见参考文献2):

式中:UP ━电网线电压(kV)

C ━单相对地电容(F)

一般电缆单位电容为200-400 pF/m左右(可查电缆厂家样本)。

(2)根据经验公式,计算电容电流(见参考文献3):

Ic=0.1×UP ×L (4-2)

式中:UP━电网线电压(kV)

L ━电缆长度(km)

4.2 架空线电容电流的计算有以下两种:

(1)根据单相对地电容,计算电容电流(见参考文献2):

式中:UP━电网线电压(kV)

C ━单相对地电容(F)

一般架空线单位电容为5-6 pF/m。

(2)根据经验公式,计算电容电流(见参考文献3):

Ic= (2.7~3.3)×UP×L×10-3 (4-4)

式中:UP━电网线电压(kV)

L ━架空线长度(km)

2.7━系数,适用于无架空地线的线路

3.3━系数,适用于有架空地线的线路

同杆双回架空线电容电流(见参考文献3) :Ic2=(1.3~1.6)Ic (1.3-对应10KV线路,1.6-对应35KV线路, Ic-单回线路电容电流)

4.3 变电所增加电容电流的计算(见参考文献3)

表1

通过4-2和4-4比较得出电缆线路的接地电容电流是同等长度架空线路的37倍左右,所以在城区变电站中,由于电缆线路的日益增多,配电系统的单相接地电容电流值是相当可观的,又由于接地电流和正常时的相电压相差90°,在接地电流过零时加在弧隙两端的电

压为最大值,造成故障点的电弧不易熄灭,常常形成熄灭和重燃交替的间隙性和稳定性电弧,间隙性弧光接地能导致危险的过电压,而稳定性弧光接地会发展成相间短路,危及电网的安全运行。

5、传统消弧线圈存在的问题

当3—66KV系统的单相接地故障电容电流超过10A时,应采用消弧线圈接地方式,通过计算电网当前脱谐度(ε = (IL-

IC)/IC ·100%)与设定值的比较,决定是否调节消弧圈的分接头,过去选用的传统消弧线圈必须停电调节档位,在运行中暴露出许多问题和隐患,具体表现如下:

(1)由于传统消弧线圈没有自动测量系统,不能实时测量电网对地电容电流和位移电压,当电网运行方式或电网参数变化后靠人工估算电容电流,误差很大,不能及时有效地控制残流和抑制弧光过电压,不易达到最佳补偿。

(2)传统消弧线圈按电压等级的不同、电网对地电容电流大小的不同,采用的调节级数也不同,一般分五级或九级,级数少、级差电流大,补偿精度很低。

(3)调谐需要停电、退出消弧线圈,失去了消弧补偿的连续性,响应速度太慢,隐患较大,只能适应正常线路的投切。如果遇到系统异常或事故情况下,如系统故障低周低压减载切除线路等,来不及进行调整,易造成失控。若此时正碰上电网单相接地,残流大,正需要补偿而跟不上,容易产生过电压而损坏电力系统绝缘薄弱的电器设备,引起事故扩大、雪上加霜。

相关文档
最新文档