超分子聚合物的研究进展
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超分子聚合物的研究进展
摘要:介绍了超分子聚合物领域的研究进展及其应用,阐述了其主要类别(如氢键超分子聚合物、配合物型超分子聚合物、π-π堆积超分子聚合物及离子效应超分子聚合物),最后讨论了超分子化合物研究过程中的表征方法。超分子聚合物的研究前景将朝着更大产率、更简便制备步骤及更新颖结构的方向发展。
The authors introduced the status quo in studies on supramolecular polymers and their applications, and expatiated main categories of the polymers, involving hydrogen bond supramolecular polymer, coordination complex supramolecular polymer, π-π stacking supramolecular polymer and ionic effect supramolecular polymer. The characterization methods adopted in the investigations of the supramolecular compounds were discussed. The high yield, simplified preparation process and novel structure are deemed as the major targets in the future research and development of the supramolecular polymers.
关键词:超分子超分子聚合物
一、超分子
“超分子”这一名词最早是在1937年WOLF公司第一次提出的,这一术语引起了社会极大的反响。而法国科学家LEHN 第一次系统性地研究并定义超分子,使他和PEDERSON C J ,CRAM D J一同分享了1987年的诺贝尔化学奖。超分子结构突破了传统性的共价键结合的一大壁垒,标志着化学分子史上的一大飞跃。此后,以非共价键为主的超分子聚合物成为了科学家研究的一大热点。
超分子化学这一概念, 他指出: “基于共价键存在着分子化
学领域, 基于分子组装体和分子间键而存在着超分子化学”。超分子化学是基于分子间的非共价键相互作用而形成的分子聚集体的化学, 换句话说分子间的相互作用是超分子化学的核心。在超分子化学中,不同类型的分子间相互作用时可以区分的,根据他们不同的强弱程度、取向以及对距离和角度的依赖程度,可以分为:金属离子的配位键、氢键、π-π堆积作用、静电作用和疏水作用等。它们的强度分布由π-π堆积作用及氢键的弱到中等,到金属离子配位键的强或非常强,这些作用力成为驱动超分子自组装的基本方法。人们可以根据超分子自组装原则,使用分子间的相互作用力作为工具,把具有特定的结构和功能的组分或建筑模块按照一定的方式组装成新的超分子化合物。这些新的化合物不仅仅能表现出单个分子所不具备的特有性质,还能大大增加化合物的种类和数目。如果人们能够很好的控制超分子自组装过程,就可以按照预期目标更简单、更可靠的得到具有特定结构和功能的化合物。
二、超分子聚合物
把单体结构组元之间由非共价键这种弱分子间相互作用组装而成的分子聚集体称为分子聚合物。简单地说,在超分子聚合物中,单体是通过非共价键结合在一起的。之所以将其称为超分子聚合物,一方面是因为这种聚集体中的长链或网络结构类似聚合物的结构;另一方面,时候因为弱分子间作用力赋予这种材料各种软性的类聚合物性能。
超分子聚合物根据共价键结合力的不同主要分为氢键超分子聚合物,配合物型超分子聚合物,π-π堆积超分子聚合物。含有多种非共价键力的超分子则被称为混合型超分子聚合物。
超分子聚合物化学是超分子化学与高分子化学的交叉学科。超分子聚合物的聚合度N ≈ K×C^(1/2),其中K为结合常数,C为单体浓度。目前超分子聚合物的表征上还存在一定的困难,尤其是分子量的表征。
1.氢键超分子聚合物
氢键( X....H,X 可为N、 O、 F等)在超分子聚合物中占主导地位。它在强度上最高可达到120KJ/mol,约为共价键一般强度的一半。虽然不是最强的非共价键,但它的高度取向性和丰富的形成方式却弥补了各种缺陷,使其成为超分子聚合物中最常用的非共价键链接。
氢键是缺电子的氢原子与邻近的高电负性原子的相互作用,用 D—H…A表示。原子 D称为氢键给体,原子 A称为氢键受体,D和A都是高电负性的原子且 D 必须有孤对电子。羧基-吡啶,羧基-叔胺,羧基-咪唑,酚羟基-叔胺,酚羟基-吡啶,酚羟基-脲羰基等都可形成稳定的氢键[7]。还有一些非常规的氢键,如D —H… (π键或离域π键),D—H…M (过渡金属离子),N+一H…N, D—H…H—A[8]。氢键的形成具有方向性和选择性,是最重要的一类非共价键。在 DNA分子的双螺旋结构中碱基对(A-T 和G-C) 也是依靠氢键结合的。根据碱基对及其类似物的电子互补和静电相互作用概念可以设计和产生仿生超分子聚合物[9]。氢键型超分子聚合物包括:(1)氢键导致的液晶型超分子聚合物,许多氢键型超分子聚合物显示出液晶态。液晶基元可通过氢键组装成具有复杂形态的主链型、侧链型、组合型和交联网络型( 热可逆交联)超分子液晶聚合物[10]。(2)经氢键组装的线性链超分子聚合物可分为两面性分子氢键型和分子间氢键型。两面性分子氢键型主链超分子聚合物可用含两个氢键受体(A)和两个氢键给体(D)具有形成氢键的自互补性的脲嘧啶酮衍生物的氢键二聚体得到[4]。分子间氢键型主链超分子聚合物可由单、双重、三重和多重氢键组成并可能生成液晶态,还可作为聚合物的扩链剂,即通过反应性多重氢键合成子将螯合聚合物扩链[11],并且可以组装成具有多样性几何形状和拓扑结构的超分子聚合物有序体[4]。(3)螺旋链氢键型超分
子聚合物,螺旋链超分子聚合物的形成是通过每一个单体组分或建筑模块产生的两个沿线性序列的主相互作用和两个沿螺旋方向的次相互作用的协同。氢键相互作用是螺旋链超分子聚合物形成的重要因素之一。1,3,5-苯乙烯三酰胺具有C
3
。对称性,由一个苯环和三个酰胺侧基组成,可以经三重分子间氢键和芳烯-
芳烯相互作用形成柱体,其中芳烯-芳烯相互作用比三重氢键弱,当R=C
2H
4 OCH
3
时能生成螺旋链结构[4]。
氢键型超分子聚合物是重复单元经氢键相互作用连接在一起的阵列,可生成液晶态,多样化的几何形状和高有序的凝聚态结构。氢键的温度敏感性和可逆性导致氢键型超分子聚合物具有和传统共价键结合的聚合物不同的性能。氢键型超分子聚合物是一类动态的智能型功能高分子材料,可在光化学、光电转换、非线性光学、弹性体、水凝胶和生物医用工程等领域广泛应用。
2.金属-超分子聚合物
金属-超分子聚合物由金属离子( M),有机或无机配体(1igand)和间隔单元(spacer)组成。间隔单元可以是小分子或是高分子。金属一超分子聚合物的基本持征是单体为具有单、双或多位点的有机或高分子配体,非共价键相互作用是通过金属离子与有机或高分子配体的配位组装,能生成多样化的几何阵列和拓扑结构。常用的金属离子有Mn、Fe、Ru、0s、Co、Ir、Ni、Pt、Cu、Ag、Zn、Cd 和Hg等离子,一般以低氧化态形式存在。常用的有机配体是带功能基团的双、三和稠合吡啶衍生物,它们可从单吡啶衍生物为原料制备[12-13]。Schubert等在以吡啶化合物为基础的金属一超分子聚合物的制备、结构、功能和应用方面开展了量研究。除了含吡啶的配体,席夫碱、碳氢化合物、脂肪和芳香族二胺、大环冠醚、轮烷和索烃等多种有机配体和含硅、磷、卤素等无机配体也可用于金属超分子聚合物的制备。金属-超分子聚合物主要有:以金属-配体相互作用为连接单元(1inker)连接两个高分子链形成均聚或共聚物的线形金属超分子聚合物[14-16]。
金属-超分子聚合物可在水中形成胶束结构、可应用于pH敏感的开关和制备纳米材料等领域;接枝和交联的金属-超分子聚合物,如金属超分子接枝聚苯乙炔即在聚苯乙炔的侧链引入三吡啶配体,再与Fe、Ni、Cu、Cr、Mn、Co 等金属离子形成络合物具有光-电转换功能,可用于有机发光二极管[17];树枝状金属-超分子聚合物,或称为金属树枝体(metallodendrimers)是含金属-配体相互作用的树枝状聚合物,其组成包括芯(核),支化单元(间隔单元)和表面基团,具有高