基于改进引力搜索算法的风电功率短期预测优化调度研究
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
doi: 10������ 13928 / j������ cnki������ wrahe������ 2019������ 03������ 027 中图分类号: TM614 文献标识码: A 文章编号: 1000 ̄ 0860(2019)03 ̄ 0201 ̄ 06
Gravitational search algorithm ̄based study on optimal wind power scheduling with short ̄term prediction KOU Jiantao
( State Grid Customer Service Centerꎬ Tianjin 750021ꎬ China)
Abstract: Considering the random fluctuation characteristics of wind power itselfꎬ the uncertainty factors of wind power are nec ̄ essary to be taken into account in the process of making pre ̄day market economic pre ̄scheduling������ Thereforeꎬ a pre ̄day economic scheduling stochastic optimization model consisting of wind farm is established herein with the chance constrained programming methodꎬ and then the improved gravitational search algorithm is selected to solve the established model������ Finallyꎬ the model simu ̄ lation is carried out with specific calculation case in combination with the IEEE ̄30 node network debugging systemꎬ while the in ̄ fluence from the load level on the system containing wind power capacityꎬ the influence from the predictive deviation of wind pow ̄ er on the penalty cost of pre ̄scheduling and the influences from different cost coefficients under predicted wind powerare dis ̄ cussed with the simulated result������ The study result shows that the rate of convergence optimally simulated by the improved gravita ̄ tional search algorithm is faster than those from the particle swarm optimization and genetic algorithm with high reliability������ The study result provides reference for the study on the short ̄term prediction of wind power under pre ̄day market economy������ Keywords: wind powerꎻ pre ̄day marketꎻ optimal schedulingꎻ gravitational search algorithmꎻ chance constrained programming methodꎻ short ̄term prediction
水利水电技术 第 50 卷 2019 年第 3 期
寇建涛 ������ 基于改进引力搜索算法的风电功率短期预测优化调度研究[ J]������ 水利水电技术ꎬ 2019ꎬ 50(3) : 201 ̄ 206������ KOU Jiantao������ Gravitational search algorithm ̄based study on optimal wind power scheduling with short ̄term prediction[ J] ������ Water Resources and Hydropower Enginபைடு நூலகம்eringꎬ 2019ꎬ 50(3) : 201 ̄ 206������
基于改进引力搜索算法的风电功率短期 预测优化调度研究
寇建涛
( 国家电网公司客户服务中心ꎬ 天津 750021)
摘 要: 考虑到风电功率本身的随机波动特性ꎬ 在制定日前市场经济预调度方案过程中ꎬ 需要将风电 功率不确定性因素考虑进来ꎮ 因此ꎬ 利用机会约束规划方法来建立包含风电场在内的日前经济调度随 机优化模型ꎬ 并选用改进的引力搜索算法来求解所建立的模型ꎮ 最后ꎬ 选用具体算例ꎬ 结合 IEEE - 30 节点网络调试系统进行模型仿真ꎬ 并利用仿真结果探讨了负荷水平对系统所容纳的风电容量的影 响、 风电功率预测偏差对预调度惩罚成本的影响、 风电预测功率下不同成本系数对日前市场的影响ꎮ 研究结果表明ꎬ 利用改进引力搜索算法进行优化仿真的收敛速度比粒子群算法和遗传算法的收敛速度 快ꎬ 可靠性高ꎮ 研究所得成果为日前市场经济下风电功率短期预测研究提供参考ꎮ 关键词: 风电ꎻ 日前市场ꎻ 优化调度ꎻ 引力搜索算法ꎻ 机会约束规划法ꎻ 短期预测
Gravitational search algorithm ̄based study on optimal wind power scheduling with short ̄term prediction KOU Jiantao
( State Grid Customer Service Centerꎬ Tianjin 750021ꎬ China)
Abstract: Considering the random fluctuation characteristics of wind power itselfꎬ the uncertainty factors of wind power are nec ̄ essary to be taken into account in the process of making pre ̄day market economic pre ̄scheduling������ Thereforeꎬ a pre ̄day economic scheduling stochastic optimization model consisting of wind farm is established herein with the chance constrained programming methodꎬ and then the improved gravitational search algorithm is selected to solve the established model������ Finallyꎬ the model simu ̄ lation is carried out with specific calculation case in combination with the IEEE ̄30 node network debugging systemꎬ while the in ̄ fluence from the load level on the system containing wind power capacityꎬ the influence from the predictive deviation of wind pow ̄ er on the penalty cost of pre ̄scheduling and the influences from different cost coefficients under predicted wind powerare dis ̄ cussed with the simulated result������ The study result shows that the rate of convergence optimally simulated by the improved gravita ̄ tional search algorithm is faster than those from the particle swarm optimization and genetic algorithm with high reliability������ The study result provides reference for the study on the short ̄term prediction of wind power under pre ̄day market economy������ Keywords: wind powerꎻ pre ̄day marketꎻ optimal schedulingꎻ gravitational search algorithmꎻ chance constrained programming methodꎻ short ̄term prediction
水利水电技术 第 50 卷 2019 年第 3 期
寇建涛 ������ 基于改进引力搜索算法的风电功率短期预测优化调度研究[ J]������ 水利水电技术ꎬ 2019ꎬ 50(3) : 201 ̄ 206������ KOU Jiantao������ Gravitational search algorithm ̄based study on optimal wind power scheduling with short ̄term prediction[ J] ������ Water Resources and Hydropower Enginபைடு நூலகம்eringꎬ 2019ꎬ 50(3) : 201 ̄ 206������
基于改进引力搜索算法的风电功率短期 预测优化调度研究
寇建涛
( 国家电网公司客户服务中心ꎬ 天津 750021)
摘 要: 考虑到风电功率本身的随机波动特性ꎬ 在制定日前市场经济预调度方案过程中ꎬ 需要将风电 功率不确定性因素考虑进来ꎮ 因此ꎬ 利用机会约束规划方法来建立包含风电场在内的日前经济调度随 机优化模型ꎬ 并选用改进的引力搜索算法来求解所建立的模型ꎮ 最后ꎬ 选用具体算例ꎬ 结合 IEEE - 30 节点网络调试系统进行模型仿真ꎬ 并利用仿真结果探讨了负荷水平对系统所容纳的风电容量的影 响、 风电功率预测偏差对预调度惩罚成本的影响、 风电预测功率下不同成本系数对日前市场的影响ꎮ 研究结果表明ꎬ 利用改进引力搜索算法进行优化仿真的收敛速度比粒子群算法和遗传算法的收敛速度 快ꎬ 可靠性高ꎮ 研究所得成果为日前市场经济下风电功率短期预测研究提供参考ꎮ 关键词: 风电ꎻ 日前市场ꎻ 优化调度ꎻ 引力搜索算法ꎻ 机会约束规划法ꎻ 短期预测