定向凝固技术
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定向凝固过程中温度梯度和凝固速率这两个凝固参数能够独立变化,成为凝固理论研究的重要手段。下面简单介绍定向凝固的几种工艺。
发热剂法(EP法):所谓的发热剂法就是将熔化好的金属液浇入一侧壁绝热,底部冷却,顶部覆盖发热 剂的铸型中,在金属液和已凝固金属中建立起一个自上而下的温度梯度,使铸件自下而上进行凝固,实现单向凝固。这种方法由于所能获得的温度梯度不大,并且很难控制,致使凝固组织粗大,铸件性能差,因此,该法不适于大型、优质铸件的生产。但其工艺简单、成本低,可用于制造小批量零件。
高速凝固法(HRS法):为了改善功率降低法在加热器关闭后,冷却速度慢的缺点,在Bridgman晶体生长技术的基础上发展成了一种新的定向凝固技术,即快速凝固法。该方法的特点是铸件以一定的速度从炉中移出或炉子移离铸件,采用空冷的方式,而且炉子保持加热状态。这种方法由于避免了炉膛的影响,且利用空气冷却,因而获得了较高的温度梯度和冷却速度,所获得的柱状晶间距较长,组织细密挺直,且较均匀,使铸件的性能得以提高,在生产中有一定的应用。
液态金属冷却法(LMC法):HRS法是由辐射换热来冷却的,所能获得的温度梯度和冷却速度都很有限。为了获得更高的温度梯度和生长速度。在HRS法的基础上,将抽拉出的铸件部分浸入具有高导热系数的高沸点、低熔点、热容量大的液态金属中,形成了一种新的定向凝固技术,即LMC法。这种方法提高了铸件的冷却速度和固液界面的温度梯度,而且在较大的生长速度范围内可使界面前沿的温度梯度保持稳定,结晶在相对稳态下进行,能得到比较长的单向柱晶。
普通铸件一般均由无一定结晶方向的多晶体组成。在高温疲劳和蠕变过程中,垂直于主应力的横向晶界往往是裂纹产生和扩展的主要部位,也是涡轮叶片高温工作时的薄弱环节。采用定向凝固技术可获得生长方向与主应力方向一致的单向生长的柱状晶体)。定向凝固由于消除了横向晶界,从而提高了材料抗高温蠕变和疲劳的能力。定向凝固铸件的组织分为柱状、单晶和定向共晶3种。
定向凝固技术
在熔模铸造型壳中建立特定方向的温度梯度,使熔融合金沿着与热流相反的方向按照要求的结晶取向凝固的一种铸造工艺。定向凝固技术最突出的成就是在航空工业中的应用。
美国普拉特·惠特尼航空公司采用凝固技术,自1965年美国普拉特·惠特尼航空公司采用高温合金定向凝固技术以来,这项技术已经在许多国家得到应用。采用定向凝固技术可以生产具有优良的抗热冲击性能较长的疲劳寿命较好的蠕变抗力和中温塑性的薄壁空心涡轮叶片。应用这种技术能使涡轮叶片的使用温度提高10~30[2oc],涡轮进口温度提高20~60[2oc],从而提高发动机的推力和可靠性,并延长使用寿命。
功率降低法(PD法):将保温炉的加热器分成几组,保温炉是分段加热的。当熔融的金属液置于保温炉内后,在从底部对铸件冷却的同时,自下而上顺序关闭加热器,金属则自下而上逐渐凝固,从而在铸件中实现定向凝固。通过选择合适的加热器件,可以获得较大的冷却速度,但是在凝固过程中温度梯度是逐渐减小的,致使所能允许获得的柱状晶区较短,且组织也不够理想。加之设备相对复杂,且能耗大,限制了该方法的应用。
铸件定向凝固需要两个条件:首先,热流向单一方向流动并垂直于生长中的固-液界面;其次,晶体生长前方的熔液中没有稳定的结晶核心。为此,在工艺上必须采取措施避免侧向散热,同时在靠近固-液界面的熔液中应造成较大的温度梯度。这是保证定向柱晶和单晶生长挺直,取向正确的基本要素。以提高合金中的温度梯度为出发点,定向凝固技术已由功率降低法、快速凝固法发展到液态金属冷却法。
利用激光表面熔凝技术实现超高温度梯度快速定向凝固的关键在于:在激光熔池内获得与激光扫描速度方向一致的温度梯度。根据合金凝固特性选择适当的激光工艺参数,以获得包晶组织。目前激光超高温度梯度快速定向凝固还处于探索性实验阶段。
常用的液态金属有Ga—In合金和Ga—In—Sn合金,以及Sn液,前二者熔点低,但价格昂贵,因此只适于在实验室条件下使用。 Sn液熔点稍高(232℃),但由于价格相对比较便宜,冷却效果也比较好,因而适于工业应用。该法已被美国、前苏联等国用于航空发动机叶片的生产。
新型的定向凝固技术有区域熔化液态金属冷却法(ZMLMC法):该方法采用在距液固界面极近的位置处设置感应线圈进行强制加热,使金属局部熔化过热,产生的熔化区很窄,从而将液固界面位置下压,同时使液相中的最高温度尽量靠近凝固界面,启动抽拉装置,不断地向下抽拉熔化的试样进入液态合金中冷却。ZMLMC定向凝固装置最高温度梯度可达1300K/cm,最大冷却速度可达50K/s,凝固速率可在61000μm/s内调节。目前这方面的研究还都处于试验阶段,要进一步广泛应用,还有待于进一步的努力和改进。深过冷定向凝固(DUDS法):过冷熔体中的定向凝固法是将盛有金属液的坩埚置于一激冷基座上,在金属液被动力学过冷的同时,金属液内建立起一个自下而上的温度梯度,冷却过程中温度最低的底部先形核,晶体自下而上生长,形成定向排列的树枝晶骨架,其间是残余的金属液。在随后的冷却过程中,这些金属液依靠向外界散热而在已有的枝晶骨架上凝固。该法大大降低了设备要求,热量散失快,铸件生产率高,铸件组织结构细小,微观成分偏析程度低,各种力学性能大幅提高。谢发勤等人采用深过冷定向凝固方法制备的Cu-Ni合金定向凝固样件,其一次枝晶间距比LMC法获得的组织还要细。目前,深过冷的研究还局限于纯金属或简单的二元合金,对复杂合金的深过冷的获得还存在着许多需要解决的问题。电磁约束成形定向凝固技术(DSEMS):电磁约束成形定向凝固技术是西北工业大学傅恒志等人将电磁约束成形技术和高梯度定向技术相结合而提出的新型材料制备技术。该技术利用电磁感应加热熔化感应器内的金属材料,并利用在金属熔体表层部分产生的电磁压力来约束已熔化的金属熔体成形。[10]同时,冷却介质与铸件表面直接接触,增强了铸件固相的冷却能力,在固-液界面附近熔体内产生很高的温度梯度,使凝固组织超细化,可显著提高逐渐的表面质量和内在综合性能。电磁约束成形定向凝固技术为先进材料成形加工技术的发展开辟了一个新的领域,对高熔点、易氧化及高活性特种合金的成形制备具有特别重要的意义。此技术目前还处于研究阶段。激光超高温度梯度快速定向凝固(LRM):杨森等人认为激光能量高度集中的特性,使它具备了在作为定向凝固热源时可能获得比现有定向凝固方法高得多的温度梯度的可能性。激光超高温度梯度快速定向凝固能够获得比常规定向凝固包括ZMLMC技术高得多的温度梯度和凝固速率。
定向凝固成形技术是伴随高温合金的发展而逐渐发展起来的,是在凝固过程中采用强制手段,在凝固金属和未凝固熔体中建立起特定方向的温度梯度,从而使熔体沿着与热流相反的方向凝固,以获得具有特定取向柱状晶的技术。由于该技术较好地控制了凝固组织的晶粒取向,消除了横向晶界,大大提高了材料的纵向力学性能。因此,将该技术用于燃气涡轮发动机叶片的生产,所获得的柱状晶组织具有优良的抗热冲击性能、长的疲劳寿命、高的高温蠕变抗力和中温塑性,进而提高了叶片的使用寿命和使用温度。该技术的进一步发展是单晶生产,它除了用于高温合金单晶叶片的研制外,还逐渐一。
发热剂法(EP法):所谓的发热剂法就是将熔化好的金属液浇入一侧壁绝热,底部冷却,顶部覆盖发热 剂的铸型中,在金属液和已凝固金属中建立起一个自上而下的温度梯度,使铸件自下而上进行凝固,实现单向凝固。这种方法由于所能获得的温度梯度不大,并且很难控制,致使凝固组织粗大,铸件性能差,因此,该法不适于大型、优质铸件的生产。但其工艺简单、成本低,可用于制造小批量零件。
高速凝固法(HRS法):为了改善功率降低法在加热器关闭后,冷却速度慢的缺点,在Bridgman晶体生长技术的基础上发展成了一种新的定向凝固技术,即快速凝固法。该方法的特点是铸件以一定的速度从炉中移出或炉子移离铸件,采用空冷的方式,而且炉子保持加热状态。这种方法由于避免了炉膛的影响,且利用空气冷却,因而获得了较高的温度梯度和冷却速度,所获得的柱状晶间距较长,组织细密挺直,且较均匀,使铸件的性能得以提高,在生产中有一定的应用。
液态金属冷却法(LMC法):HRS法是由辐射换热来冷却的,所能获得的温度梯度和冷却速度都很有限。为了获得更高的温度梯度和生长速度。在HRS法的基础上,将抽拉出的铸件部分浸入具有高导热系数的高沸点、低熔点、热容量大的液态金属中,形成了一种新的定向凝固技术,即LMC法。这种方法提高了铸件的冷却速度和固液界面的温度梯度,而且在较大的生长速度范围内可使界面前沿的温度梯度保持稳定,结晶在相对稳态下进行,能得到比较长的单向柱晶。
普通铸件一般均由无一定结晶方向的多晶体组成。在高温疲劳和蠕变过程中,垂直于主应力的横向晶界往往是裂纹产生和扩展的主要部位,也是涡轮叶片高温工作时的薄弱环节。采用定向凝固技术可获得生长方向与主应力方向一致的单向生长的柱状晶体)。定向凝固由于消除了横向晶界,从而提高了材料抗高温蠕变和疲劳的能力。定向凝固铸件的组织分为柱状、单晶和定向共晶3种。
定向凝固技术
在熔模铸造型壳中建立特定方向的温度梯度,使熔融合金沿着与热流相反的方向按照要求的结晶取向凝固的一种铸造工艺。定向凝固技术最突出的成就是在航空工业中的应用。
美国普拉特·惠特尼航空公司采用凝固技术,自1965年美国普拉特·惠特尼航空公司采用高温合金定向凝固技术以来,这项技术已经在许多国家得到应用。采用定向凝固技术可以生产具有优良的抗热冲击性能较长的疲劳寿命较好的蠕变抗力和中温塑性的薄壁空心涡轮叶片。应用这种技术能使涡轮叶片的使用温度提高10~30[2oc],涡轮进口温度提高20~60[2oc],从而提高发动机的推力和可靠性,并延长使用寿命。
功率降低法(PD法):将保温炉的加热器分成几组,保温炉是分段加热的。当熔融的金属液置于保温炉内后,在从底部对铸件冷却的同时,自下而上顺序关闭加热器,金属则自下而上逐渐凝固,从而在铸件中实现定向凝固。通过选择合适的加热器件,可以获得较大的冷却速度,但是在凝固过程中温度梯度是逐渐减小的,致使所能允许获得的柱状晶区较短,且组织也不够理想。加之设备相对复杂,且能耗大,限制了该方法的应用。
铸件定向凝固需要两个条件:首先,热流向单一方向流动并垂直于生长中的固-液界面;其次,晶体生长前方的熔液中没有稳定的结晶核心。为此,在工艺上必须采取措施避免侧向散热,同时在靠近固-液界面的熔液中应造成较大的温度梯度。这是保证定向柱晶和单晶生长挺直,取向正确的基本要素。以提高合金中的温度梯度为出发点,定向凝固技术已由功率降低法、快速凝固法发展到液态金属冷却法。
利用激光表面熔凝技术实现超高温度梯度快速定向凝固的关键在于:在激光熔池内获得与激光扫描速度方向一致的温度梯度。根据合金凝固特性选择适当的激光工艺参数,以获得包晶组织。目前激光超高温度梯度快速定向凝固还处于探索性实验阶段。
常用的液态金属有Ga—In合金和Ga—In—Sn合金,以及Sn液,前二者熔点低,但价格昂贵,因此只适于在实验室条件下使用。 Sn液熔点稍高(232℃),但由于价格相对比较便宜,冷却效果也比较好,因而适于工业应用。该法已被美国、前苏联等国用于航空发动机叶片的生产。
新型的定向凝固技术有区域熔化液态金属冷却法(ZMLMC法):该方法采用在距液固界面极近的位置处设置感应线圈进行强制加热,使金属局部熔化过热,产生的熔化区很窄,从而将液固界面位置下压,同时使液相中的最高温度尽量靠近凝固界面,启动抽拉装置,不断地向下抽拉熔化的试样进入液态合金中冷却。ZMLMC定向凝固装置最高温度梯度可达1300K/cm,最大冷却速度可达50K/s,凝固速率可在61000μm/s内调节。目前这方面的研究还都处于试验阶段,要进一步广泛应用,还有待于进一步的努力和改进。深过冷定向凝固(DUDS法):过冷熔体中的定向凝固法是将盛有金属液的坩埚置于一激冷基座上,在金属液被动力学过冷的同时,金属液内建立起一个自下而上的温度梯度,冷却过程中温度最低的底部先形核,晶体自下而上生长,形成定向排列的树枝晶骨架,其间是残余的金属液。在随后的冷却过程中,这些金属液依靠向外界散热而在已有的枝晶骨架上凝固。该法大大降低了设备要求,热量散失快,铸件生产率高,铸件组织结构细小,微观成分偏析程度低,各种力学性能大幅提高。谢发勤等人采用深过冷定向凝固方法制备的Cu-Ni合金定向凝固样件,其一次枝晶间距比LMC法获得的组织还要细。目前,深过冷的研究还局限于纯金属或简单的二元合金,对复杂合金的深过冷的获得还存在着许多需要解决的问题。电磁约束成形定向凝固技术(DSEMS):电磁约束成形定向凝固技术是西北工业大学傅恒志等人将电磁约束成形技术和高梯度定向技术相结合而提出的新型材料制备技术。该技术利用电磁感应加热熔化感应器内的金属材料,并利用在金属熔体表层部分产生的电磁压力来约束已熔化的金属熔体成形。[10]同时,冷却介质与铸件表面直接接触,增强了铸件固相的冷却能力,在固-液界面附近熔体内产生很高的温度梯度,使凝固组织超细化,可显著提高逐渐的表面质量和内在综合性能。电磁约束成形定向凝固技术为先进材料成形加工技术的发展开辟了一个新的领域,对高熔点、易氧化及高活性特种合金的成形制备具有特别重要的意义。此技术目前还处于研究阶段。激光超高温度梯度快速定向凝固(LRM):杨森等人认为激光能量高度集中的特性,使它具备了在作为定向凝固热源时可能获得比现有定向凝固方法高得多的温度梯度的可能性。激光超高温度梯度快速定向凝固能够获得比常规定向凝固包括ZMLMC技术高得多的温度梯度和凝固速率。
定向凝固成形技术是伴随高温合金的发展而逐渐发展起来的,是在凝固过程中采用强制手段,在凝固金属和未凝固熔体中建立起特定方向的温度梯度,从而使熔体沿着与热流相反的方向凝固,以获得具有特定取向柱状晶的技术。由于该技术较好地控制了凝固组织的晶粒取向,消除了横向晶界,大大提高了材料的纵向力学性能。因此,将该技术用于燃气涡轮发动机叶片的生产,所获得的柱状晶组织具有优良的抗热冲击性能、长的疲劳寿命、高的高温蠕变抗力和中温塑性,进而提高了叶片的使用寿命和使用温度。该技术的进一步发展是单晶生产,它除了用于高温合金单晶叶片的研制外,还逐渐一。