对有限元法有限差分法边界元法和模拟电荷法的粗略总结

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对有限元法、有限差分法、边界元法和模拟电荷法的粗略总结:有限元法

( finiteelementmethod ):将连续的求解域离散为一组单元的组合体,用在每个单元内假设的近似函数来分片的表示求解域上待求的未知场函数,近似函数通常由未知场函数及其导数在单元各节点的数值插值函数来表达。从而使一个连续的无限自由度问题变成离散的有限自由度问题。缺点是有限元必须同时对所有域内节点和边界节点联立求解,待求未知数多,要求解的方程规模大,导致输入数据多,计算的准备工作量大。

有限差分法( finite difference method ):直接从微分方程出发,将求解区域划分为网格,近似地用差分、差商代替微分、微商,于是无限度的问题化成有限自由度的问题。

这种方法在解决规则边界的问题时极为方便,但是正是由于这种限制而增加了它的局限性,即对于非规则边界的问题适用性较差。

边界元法( boundaryelementmethod ):边界元法是在有限元法之后发展起来的一种较精确有效的工程数值分析方法。它以定义在边界上的边界积分方程为控制方程,通过对边界分元插值离散,化为代数方程组求解。它与基于偏微分方程的区域解法相比,由于降低了问题的维数,而显著降低了自由度数,边界的离散也比区域的离散方便得多,可用较简单的单元准确地模拟边界形状,最终得到阶数较低的线性代数方程组。

又由于它利用微分算子的解析的基本解作为边界积分方程的核函数,而具有解析与数值相结合的特点,通常具有较高的精度。特别是对于边界变量变化梯度较大的问题,如应力集中问题,或边界变量出现奇异性的裂纹问题,边界元法被公认为比有限元法更加精确高效。由于边界元法所利用的微分算子基本解能自动满足无限远处的条件,因而边界元法特别便于处理无限域以及半无限域问题。边界元法的主要缺点是它的应用范围以存在相应微分算子的基本解为前提,对于非均匀介质等问题难以应用,故其适用范围远不如有限元法广泛,而且通常由它建立的求解代数方程组的系数阵是非对称满阵,对解题规模产生较大限制。对一般的非线性问题,由于在方程中会出现域内积分项,从而部分抵消了边界元法只要离散边界的优点。

模拟电荷法(charge simulatio n method):在实际工程计算中,电极表面上

1/ 2

连续分布的束缚电荷的分布情况是未知的,不能直接由给定的边界条件解出。如果在计算场域之外设置n 个被称为模拟电荷的离散电荷来等效代替这些待求的连续电荷分布,则根据等值替代前后条件不变的前提条件,即可求得各模拟电荷的量值,从而使场域内任意一点的电位与场强便可由各模拟电荷所产生的场量叠加而获得,以此作为原场的逼近解。相比较于有限元法和有限差分法,模拟电荷法的优点是无需封边、使计算问题的维数降低一维、能直接求解出场域内的任意点的场强、计算精度高。

2/ 2

相关文档
最新文档