浅谈惯性约束核聚变_张杰
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
零,也即将磁场零点定在ν=1/2处,那么所有的FQHE 态看起来和IQHE 态一样.例如,ν=1/2和ν=1/3之间的磁场间隔ΔB 正好与ν=1所需的磁场一样,也就是说,经平移以后ν=1/3态就成了ν=1态.同样ν=2/5态成为ν=2态,ν=3/7态成为ν=3态.这就是说,原来电子的FQHE 态变成了组合费米子的IQHE 态.组合费米子模型在FQH E 和IQH E 之间建立了十分直接的联系.
6 组合费米子的有效质量
众所周知,由IQHE 的能隙 ωc = e B /m *c 可以直接计算出电子的有效质量m *.那么从图11上的直线斜率也可以直接算出组合费米子的有效质量m *
c F1≈0.6me .它远大于电子在
导带中的有效质量.但是事情并不那样十全十美.按说将图11中能隙外推到ν=1/2处应当为零,然而现在得到的却是一个负截距.实际上在IQH E 效应中也遇到类似的情况.在实际样品中,受杂质、缺陷或者结构尺寸涨落的影响,
朗道能级的展宽使整数填充因子处的朗道能隙间距减小,同样在B =0处出现一个负截距.根据上述类比,图11中在ν=1/2处负截距大小实际给出了组合费米子所受到的散射大小.至此,可以讲组合费米子是分数量子霍尔效应中的新粒子.Stormer 认为,组合费米子的真实性一点不比超导中的库珀对差.
7 结束语
鉴于量子霍尔效应涉及深奥的物理内涵,本文只是力图从物理图像的角度粗浅地介绍它的基本性质.特别是目前对FQH E 态的研究仍在不断深入,本文所涉及的内容十分基础,不可能反映这方面研究工作的广度和深度.作者只希望借1998年诺贝尔物理学奖颁布之际,能使本刊读者对量子霍尔效应有一概括的了解.另一方面,由于本文是属知识介绍性的文章,因时间关系没有一一列出每项工作的有关文献,其目的只是想减小工作量.如有不妥之处,请予以谅解.
* 国家高技术惯性约束核聚变委员会资助项目 1998-11-19收到初稿,1998-12-10修回
浅谈惯性约束核聚变*
张 杰
(中国科学院物理研究所,北京 100080)
摘 要 以煤、石油、天然气为代表的化石能源终将枯竭,基于核裂变反应的核裂变能源也由于安全性和核废料的处理等问题而不尽如人意.人类期待着新的能源.受控热核聚变反应能释放巨大的能量,而且由于这种能源干净、安全,且以用之不竭的海水作为原料,因此,受控热核聚变能是人类下一世纪的能源的主要希望所在.在地球上,主要有两种方法实现受控热核聚变反应:磁约束核聚变和惯性约束核聚变.文章通俗地介绍了惯性约束核聚变的基本原理和惯性约束核聚变研究的最新进展.
关键词 惯性约束核聚变
·
142·物理
AN OVERVIEW OF INERTIAL C ONFINEMENT FUSI ON
Zhang Jie
(Institute of Phys ics,The C h ines e Aca demy of Sciences,Beijing 100080)
Abstract The fossil fuel era is almost over.If we continue to burn fossil fuels such as oil or natural gas for energy,they will last only another few hundred years.Present energy use t rends indi-cate that an energy shortfall could arise midway through the21st c entury as fossil fuels are depleted. Taming fusion will provide us with a virtually inexhaustible source of clean,acc essible energy.In this article a brief overview of inertial confinement fusion with a sumary of recent research results will be presented.
Key word inertial confinement fusion
1 引言
宇宙的能量来自核聚变反应.太阳,还有许多恒星都是天然的核聚变能源,在太阳中发生的核聚变反应给整个世界和我们的日常生活提供了能量.人类社会运转所需要的煤、石油和天然气都是亿万年以前太阳与当时的植物相互作用的产物.在地球的沉积层中,埋藏着许多远古时代的生物遗体.在缺氧、泥沙层不断增厚、内部压力和温度不断增加的环境下,经过细菌的分解作用,形成了石油、煤和天然气等“化石”能源.这些化石能源都是不能再生的.目前世界人口大约每40年翻一番,用电量也是每40年翻一番.到目前为止,人类已经用掉了地球上几乎一半的化石能源.如图1所示,按照目前人类对化石能源的要求来推算,在22世纪到23世纪这段时间,人类对化石能源的消耗将达到最大,与此同时,地球上开始出现这种化石能源供不应求的现象.到24世纪中叶,这种化石能源就会枯竭.这种严峻的现实使得人类对新能源的探索,已经从单纯的实验室中的研究项目变成了人类社会的强烈需求
.
图1 人类社会发展对能量的需求和现有的化石能源的供给随时间的变化趋势
(图中的估算的假设:世界人口稳定在100亿,每人年平均能耗为美国1985年水平的2/3)
尽管实际上世界上的所有能量都来自太阳的核聚变反应,习惯上,人们还是将“太阳能”专指把太阳光转化为热能和电能的技术.太阳能的确非常重要,但是太阳能不可能满足人类生
·
143
·
28卷(1999年)3期
活对能量的全部要求.
目前的核电站所产生的能量来自核裂变反应.这种核裂变反应所提供的能量在下个世纪的生活中将会变得越来越重要.但是,这种核电站的安全性、对环境的污染以及核废料的处理等问题的确令人大伤脑筋.
核裂变反应能是在重原子核受到中子的轰击裂变为轻原子核时所释放的能量,与此相反,核聚变反应能则是在轻原子核聚变为重原子核时所释放的能量.如图2所示,核聚变反应可以比核裂变反应释放大得多的能量.早在50年前,人们就认识到太阳和其他恒星的能量都来自核聚变反应.下面我们以氢原子的两种同位素氘和氚的聚变反应为例来说明核聚变反应.
氘和氚都带正电荷,互相排斥.因此要想把它们聚合起来,需要用很大的能量才能克服它们相互间的斥力.这需要把核燃料加热到1亿度以上,以使氘和氚有足够大的动能,但即使这样,也还不足以发生核聚变.还需要将核燃料约束到足够高的密度,以使氘和氚有足够大的机会相撞以发生聚变.核聚变反应之前的反应物氘和氚的质量大于反应之后的产物———氦和中子的质量.根据爱因斯坦的质能关系E=mc2,反应物与产物的质量差变成了聚变能(见图3).尽管在这个聚变反应中仅失去了0.38%的质量,但是在1g氘氚反应中失去的3.8m g 的质量就相当于燃烧约1.08×104L油所释放的能量
.
图2 核聚变反应与核裂变反应所释放能量的比较(核聚变反应所释放出的能量比核裂变反应
所释放的能量要大得多
)
图3 氘氚核聚变反应的示意图和氘氚核聚变反应质能平衡图
[轻元素(如氘和氚)在高温、高压下发生核聚变反应变为较重的元素(如氦或α粒子),同时释放大量的能量(相当于燃烧石油所释放的能量的1百万倍).在聚变反应过程中所释放的能量来自核聚变反应中所失去的能量,0.02原子单位的质量(amu)变为
17.6M eV的能量]
就单位质量而言,核聚变反应所释放的能
量要比核裂变反应所释放的能量大得多.在
图4中我们可以把核能与其他化石能源进行一
下直观的比较.一个发电量为100万千瓦的火
力发电厂每年的耗煤量大约为210万吨,相当
于191列由110节货车车厢组成的火车的运
量;同样的发电量,若用燃油则每年需1千万
桶,相当于10艘超级油轮的运量.而对于核裂
变发电厂来说,则需要30吨的二氧化铀作燃
料,相当于1节货车车厢的运量;相同的电量对
于核聚变发电厂来说,则仅需600公斤核燃料,
这相当于1辆轻便客货两用汽车的运量.而且,·
144
·物理