轴类零件加工工艺设计

轴类零件加工工艺设计

轴类零件是机械制造行业中常见的零件类型之一,广泛应用于液

压机械、风机、飞机、汽车、重型设备等领域。轴类零件通常具有高

强度、低摩擦、高转速、高精度等特点,因此加工工艺设计对于保证

产品质量、提高生产效率具有重要意义。

一、工艺路线设计

轴类零件的加工路线设计是加工工艺设计的第一步。一般的加工

路线包括:原材料选择、加工方法选择、制造精度要求、热处理要求、表面处理要求、质量检验要求等。在考虑这些因素的基础上设计出最

优的加工路线,能够提高产品加工效率和质量稳定性。同时,加工路

线的合理设计也可以节省成本,提高企业的经济效益。

二、切削加工工艺设计

切削加工是轴类零件加工中常用的方法之一,常见的加工方式包

括铣削、车削、镗削、齿轮加工等。在加工轴类零件时,需要考虑到

零件材料的切削性能、切削工艺参数的选择、切削刀具的选择、切削

冷却液的选择等。在切削加工工艺设计中,应该尽可能减小切削阻力、减小加工表面粗糙度、提高加工精度和表面质量。

三、热处理工艺设计

轴类零件通常具有高强度、高精度等特点,因此热处理工艺设计

也是加工工艺设计的关键环节之一。常见的热处理方法包括淬火、回火、正火、调质等。在设计热处理工艺时,需要考虑零件的材料、零

件的用途、零件的精度等因素。正确的热处理工艺设计能够保证轴类

零件的高强度和精度稳定性。

四、表面处理工艺设计

表面处理工艺设计是为了提高轴类零件表面的质量稳定性,一般

包括磨削、腐蚀、电镀、喷涂、喷砂等。在表面处理工艺设计中,需

要考虑到零件材料、表面处理后的表面粗糙度、表面处理后的尺寸变化、表面层的耐腐蚀性等因素。正确的表面处理工艺能够为轴类零件

提供更好的耐腐蚀和耐磨性。

五、质量检验工艺设计

由于轴类零件常常用于高精度和高转速的场合,因此对质量的要

求非常高。对于轴类零件加工环节的质量检验需要做到全过程的,包

括材料的质量控制、加工中的尺寸控制、工艺检验及表面质量检验等。质量检验工艺设计需要制定有效的检验程序,做到从加工开始就保证

零件的质量的可追溯性。

综上所述,轴类零件加工工艺设计是机械制造行业中非常重要的

一个环节。正确的工艺设计能够提高产品质量、降低成本,真正为企

业提供经济价值。同时,加工工艺设计也是机械行业人才培养中必须

掌握的知识点。

轴类零件机械加工工艺规程及其设计

轴类零件机械加工工艺规程及其设 计 轴类零件是机械制造中广泛应用的零部件之一,其机械加工工艺规程的设计对于产品的质量和生产效率具有重要的意义。本文将从轴类零件的加工工艺特点、机械加工工艺规程的设计方法、常见加工工艺及其应用、及加工工艺中的注意事项等方面对轴类零件机械加工工艺规程及其设计进行详细介绍。 一、轴类零件的加工工艺特点 轴类零件在机械加工中属于细长杆状物的一类,其加工过程中需要考虑材料的变形、热影响、残余应力等问题,同时也需要考虑其使用过程中所承受的载荷作用,因此对于轴类零件的制造要求十分严格。其加工工艺特点主要包括以下几点: 1.加工工艺要求高精度:轴类零件的尺寸精度要求高,常 见的加工公差在0.01mm以下,加工过程中需要采用高精度的机床和刀具、合理的加工参数,严格控制加工误差。 2.加工难度大:由于轴类零件的材料变形大、容易产生撞 刀和毛刺,因此在加工过程中需要采用特殊的切削方法和切削工艺,如采用高速切削、切削流线型、刀具较小的切槽等。 3.轴向精度要求高:轴类零件是与轴心对称的,在加工过 程中需要控制好轴向误差,以保证其在使用时能够平稳转动。 二、机械加工工艺规程的设计方法

机械加工工艺规程的设计是制定出一套完整的工艺措施,通过对产品加工过程中各种工艺因素的控制,实现产品尺寸、结构、性能等方面的要求。机械加工工艺规程的设计方法主要包括以下几点: 1.确定加工工艺目标:在制定工艺规程前,需要明确产品的要求,包括加工精度、表面光洁度、机械性能等方面。 2.制定加工工艺流程:制定加工工艺流程是整个工艺规程中最为关键的一步,需要根据产品的结构和要求,确定各个加工步骤的顺序和方法。 3.确定加工参数:加工参数是指加工过程中需要调整的各种参数,包括切削速度、切削深度、切削力等,这些参数的调整需要根据实际情况进行。 4.选择合适的加工设备和刀具:不同的加工设备和刀具适用于不同的加工需求,因此在制定工艺规程时需要根据产品要求选择合适的加工设备和刀具。 5.确定加工质量检测方法:加工质量检测是保证产品品质的关键,需要制定一套完整的检测方法,确保产品符合规定的要求。 三、常见加工工艺及其应用 1.车削加工:轴类零件的车削加工是一种常见而有效的加工方法,可以采用单刀片、多刀片交替、切削流线型、高速切削等技术。该加工方法可用于外圆和端面的加工,并能适应各种不同材料的加工需求。

数控轴类零件加工工艺设计

数控轴类零件加工工艺设计数控轴类零件加工工艺设计 随着经济的发展和科技的进步,数控技术被广泛应用于工业制造,成为工业生产的重要环节之一。数控加工是数控技术的一个重要应用,数控加工能够提高生产效率、降低生产成本、提高产品质量和稳定性。数控轴类零件作为工业中最常见的机械零件之一,其精度和品质要求非常高,因此数控技术在其加工中的应用尤为重要。 数控轴类零件加工工艺设计是实现数控加工的一个重要步骤。下面我们就数控轴类零件加工工艺设计的内容、方法和应用进行详细介绍。 一、数控轴类零件加工工艺设计的内容 1. 材料选择:数控轴类零件通常采用优质的合金钢、不 锈钢、碳钢等金属材料。 2. 加工工艺设计:加工工艺设计包括零件的加工工序、 加工工艺参数的选择和机床的选择等方面。加工工序是指在加工中所需遵循的待加工零件的物理特性及所需工艺条件的流程。加工工艺参数是指选择适合加工工序和材料性质的加工参数,如切削速度、进给量、切削深度等。机床的选择根据零件的加工要求和加工工艺流程来选择。

3. 夹具的设计和制作:夹具是将待加工的零件固定在机 床上的装置,夹具设计和制作需要考虑零件的形状、尺寸和加工要求等因素。 4. 刀具的选择:刀具是数控加工的核心,刀具的材质、 形状、尺寸、精度等因素会影响加工效果和成本。 5. 加工过程中的质量控制:质量控制是数控加工的关键,需要对每个工序进行严格的质量控制和验收,以保证整体加工质量的稳定性和可靠性。 二、数控轴类零件加工工艺设计的方法 1. 加工工艺设计的流程:加工工艺设计的流程包括分析 零件的加工性质、制定加工工艺流程、选择加工工艺参数、选择合适的机床和刀具等。 2. 加工工艺参数的选择:加工工艺参数的选择需要结合 具体的加工过程和材料特性来确定,其可影响加工效果、加工速度、加工成本和质量控制等因素。 3. 夹具的设计和制作:夹具的设计需要考虑到零件的形状、尺寸和材料等因素,并应选择适当的夹具型式和加工过程。 4. 刀具的选择:刀具的选择应考虑到加工材料的特性、 加工工艺的要求与刀具的品质,从而选择合适的类型、规格、材料及生产厂家等。 5. 质量控制的方法:质量控制的方法包括加工工艺参数 的控制、检验分析、数据处理、工艺改进和管理优化等环节。

轴类零件加工工艺设计毕业论文

轴类零件加工工艺设计毕业论文 目录 第1章前言 (1) 第2章工艺方案分析 (2) 2.1 零件图 (2) 2.2 零件图分析 (2) 2.3 确定加工方法 (2) 2.4 确定加工方案 (2) 第3章工件的装夹 (4) 3.1 定位基准的选择 (4) 3.2 定位基准选择的原则 (4) 3.3 确定零件的定位基准 (4) 3.4 装夹方式的选择 (4) 3.5 数控车床常用的装夹方式 (4) 3.6 确定合理的装夹方式 (5) 第4章刀具及切削用量 (6) 4.1 选择数控刀具的原则 (6) 4.2 选择数控车削用刀具 (6) 4.3 设置刀点和换刀点 (6) 4.4 确定切削用量 (7) 第5章典型轴类零件的加工 (9) 5.1 轴类零件加工工艺分析 (9) 5.1.1技术要求 (9) 5.1.2毛坯选择 (9) 5.1.3定位基准选择 (9) 5.1.4轴类零件的预备加工 (9) 5.1.5 热处理工序 (10)

5.1.6加工工序的划分 (10) 5.1.7加工顺序 (10) 5.1.8走刀路线和对刀点选择 (11) 5.2 典型轴类零件加工工艺 (11) 5.2.1确定加工顺序及进给路线 (11) 5.2.2选择刀具 (11) 5.2.3选择切削用量 (11) 5.3 加工坐标系设置 (13) 5.3.1建立工件坐标系 (13) 5.3.2试切法对刀 (13) 5.3.3选择切削用量 (14) 5.4 手工编程 (15) 第6章结束语 (18) 第7章致谢词 (19) 参考文献 (20)

第1章前言 在机械加工工艺教学中,机械制造专业学生及数控技术专业学生都要学习数控车床操作技术。让学生了解相关工种的先进技术,同时培养工作岗位的前瞻性;在讲授数控知识的同时,必须要求学生掌握基本的机械加工工艺,增强系统意识,理解手动操作与自动操作之间的联系,真正把学生培养成为适应各种工作环境和岗位的多面手。数控车工基础工艺理论及技能有机融合,包括夹具的使用、量具的识读和使用、刃具的刃磨及使用、基准定位等,分类叙述了车床操作、数控车床自动编程仿真操作、数控车床编程与操作的初、中级容。以机械加工中车工工艺学与数控车床技能训练密切结合为主线,常用量具识读及工件测量、刀具及安装、工件定位与安装、金属切削过程及精加工,较清晰地展示了数控车工必须掌握的知识和技能的训练途径。对涉及与数控专业相关的基础知识、专业计算,都进行了有针对性的论述,目的在于塑造理论充实、技能扎实的专业技能型人才。 本文以与切削用量的选择,工件的定位装夹,加工顺序和典型零件为例,结合数控加工的特点,分别进行工艺方案分析,机床的选择,刀具加工路线的确定,数控程序的编制,最终形成可以指导生产的工艺文件。在整个工艺过程的设计过程中,要通过分析,确定最佳的工艺方案,使得零件的加工成本最低,合理的选用定位夹紧方式,使得零件加工方便、定位精准、刚性好,合理选用刀具和切削参数,使得零件的加工在保证零件精度的情况下,加工效率最高、刀具消耗最低。最终形成的工艺文件要完整,并能指导实际生产。

轴类零件的加工工艺及装备设计

轴类零件的加工工艺及装备设计 前言 随着计算机技术的高速发展,传统的制造业开始了根本性变革,各工业发达国家投入巨资,对现代制造技术进行研究开发,提出了全新的制造模式。目前,数控技术正在发生根本性变革,由专用型封闭式开环控制模式向通用型开放式实时动态全闭环控制模式发展。在集成化基础上,数控系统实现了超薄型、超小型化;在智能化基础上,综合了计算机、多媒体、模糊控制、神经网络等多学科技术,数控系统实现了高速、高精、高效控制,加工过程中可以自动修正、调节与补偿各项参数,实现了在线诊断和智能化故障处理;在网络化基础上,CAD/CAM与数控系统集成为一体,机床联网,实现了中央集中控制的群控加工。 1零件的用途 图中所设计的零件为一复杂的轴类零件,而轴类零件又是机器中经常遇到的典型零件之一。它主要用来连接和支承传动零部件,传递扭矩和承受载荷,图示的零件也不例外。轴类零件是旋转体零件,其长度大于直径,一般由同心轴的外圆柱面、圆锥面、内孔和螺纹及相应的端面所组成。根据结构形状的不同,轴类零件可分为光轴、阶梯轴、空心轴和曲轴等,图示零件则为阶梯轴。 2加工设备及辅助工具的选择 2.1机床的选择 根据该零件外形属于轴类零件,比较适合在车床上加工,又经过对零件图尺寸及形状分析,尺寸精度较高且要加工椭圆弧及内腔,普通机床不能加工出该零件的形状,也很难保证其尺寸精度、表面粗糙度,为了保证零件的加工尺寸精度和表面质量,因此选用数控车床。 2.2刀具的选择 刀具的选择是数控加工中重要的工艺内容之一,它不仅影响机床的加工效率,而且直接影响加工质量。编程时,选择刀具通常要考虑机床的加工能力、工序内容、工件材料等因素。与传统的加工方法相比,数控加工对刀具的要求更高。不仅要求精度高、刚度高、红硬性好、耐用度高,而且要求尺寸稳定、安装调整

轴类零件加工工艺设计分析

XX省XX机电工程高等职业学校毕业论文 (2016届) 题目:轴类零件的加工工艺分析 XX:X开诚 学号:110706752 系部:数控技术系 班级:11高职数控6班 指导教师:郁岩 2016年5月

轴类零件的加工工艺分析 X开诚 11高职数控6班 摘要:随着数控技术的不断发展和应用领域的扩大,数控加工技术对国计民生的一些重要行业(IT、汽车、轻工、医疗等)的发展起着越来越重要的作用, 本文根据数控机床的特点,针对具体的零件,进行了工艺方案的分析,工装方案的确定,刀具和切削用量的选择,确定加工顺序和加工路线,数控加工程序编制。通过整个工艺的过程的制定,充分体现了数控设备在保证加工精度,加工效率,简化工序等方面的优势。 关键词:工艺分析;加工方案;进给路线;控制尺寸

图1 零件图 技术要求 1 去除毛刺尖角倒钝 2 未注倒角均为1*45° 3 无热处理和硬度要求

一、工艺方案分析 (一)零件图分析 该零件属于抽油机里面的装配零件,表面由圆柱、顺圆弧、逆圆弧、圆锥、槽、螺纹等表面组成。尺寸标注完整,对精度要求较高,我们选用毛坯为45#钢,Φ55mm×150mm。 (二)确定加工方法 加工方法的选择原则是保证加工表面的加工精度和表面粗糙度的要求。由于获得同一级精度及表面粗糙度的加工方法一般有许多,因而在实际选择时,要结合零件的形状、尺寸大小和形位公差要求等全面考虑。 图上几个精度要求较高的尺寸,因其公差值较小,所以编程时没有取平均值,而取其基本尺寸。 在轮廓线上,有个锥度10度坐标P1、和一处圆弧切点P2,在编程时要求出其坐标,P1(45.29 ,75)P2(35,56.46)。 通过以上数据分析,考虑加工的效率和加工的经济性,最理想的加工方式为车削,考虑该零件为大批量加工,故加工设备采用数控车床。 根据加工零件的外形和材料等条件,选用CJK6032数控机床。(三)确定加工方案 零件上比较精密表面的加工,常常是通过粗加工、半精加工和精加工逐步达到的。对这些表面仅仅根据质量要求选择相应的最终加工方法是不够的,还应正确地确定从毛坯到最终成形的加工方案。 毛坯先夹持左端,车右端轮廓113mm处,右端加工Φ39mm、S Φ42mm、R9mm、Φ35mm、锥度为10度的外圆,Φ52mm.调头装夹已加工Φ52mm外圆,左端加工Φ25mm×33mm、切退刀槽、加工螺纹M25mm×1.5mm. 该典型轴加工顺序为: 预备加工---车端面---粗车右端轮廓---精车右端轮廓---切槽---工件调头---车端面---粗车左端轮廓---精车左端轮廓---切退刀槽---粗车螺纹---精车螺纹。

轴类零件加工工艺介绍

第六章典型零件加工 第一节第一节轴类零件加工 一、一、概述 (一)、轴类零件的功用与结构特点 1、功用:为支承传动零件(齿轮、皮带轮等)、传动扭矩、承受载荷,以及保证装在主轴上的工件或刀具具有一定的回转精度。 2、2、分类:轴类零件按其结构形状的特点,可分为光轴、阶梯轴、空心轴和异形轴 (包括曲轴、凸轮轴和偏心轴等)四类。 图轴的种类 a)光轴b)空心轴c)半轴d)阶梯轴e)花键轴f)十字轴g)偏心轴 h)曲轴i) 凸轮轴 若按轴的长度和直径的比例来分,又可分为刚性轴(L/d<12=和挠性轴(L/d>12)两类。 3、表面特点:外圆、内孔、圆锥、螺纹、花键、横向孔 (二)主要技术要求: 1、尺寸精度 轴颈是轴类零件的主要表面,它影响轴的回转精度及工作状态。轴颈的直径精度根据其使用要求通常为IT6~9,精密轴颈可达IT5。 2、几何形状精度 轴颈的几何形状精度(圆度、圆柱度),一般应限制在直径公差点范围内。对几何形状精度要求较高时,可在零件图上另行规定其允许的公差。 3、位置精度 主要是指装配传动件的配合轴颈相对于装配轴承的支承轴颈的同轴度,通常是用配合轴颈对支承轴颈的径向圆跳动来表示的;根据使用要求,规定高精度轴为0.001~0.005mm,而一般精度轴为0.01~0.03mm。 此外还有内外圆柱面的同轴度和轴向定位端面与轴心线的垂直度要求等。 4.表面粗糙度 根据零件的表面工作部位的不同,可有不同的表面粗糙度值,例如普通机床主轴支承轴颈的表面粗糙度为Ra0.16~0.63um,配合轴颈的表面粗糙度为Ra0.63~2.5um,随着机器运转速度的增大和精密程度的提高,轴类零件表面粗糙度值要求也将越来越小。

轴类零件加工工艺

第三十讲轴类零件加工工艺 传动轴机械加工工艺实例 轴类零件是常见的典型零件之一。按轴类零件结构形式不同,一般可分为光轴、阶梯轴和异形轴三类;或分为实心轴、空心轴等。它们在机器中用来支承齿轮、带轮等传动零件,以传递转矩或运动。 台阶轴的加工工艺较为典型,反映了轴类零件加工的大部分内容与基本规律。下面就以减速箱中的传动轴为例,介绍一般台阶轴的加工工艺。 1.零件图样分析

图A-1 传动轴 图A-1所示零件是减速器中的传动轴。它属于台阶轴类零件,由圆柱面、轴肩、螺纹、螺尾退刀槽、砂轮越程槽和键槽等组成。轴肩一般用来确定安装在轴上零件的轴向位置,各环槽的作用是使零件装配时有一个正确的位置,并使加工中磨削外圆或车螺纹时退刀方便;键槽用于安装键,以传递转矩;螺纹用于安装各种锁紧螺母和调整螺母。 根据工作性能与条件,该传动轴图样(图A-1)规定了主要轴颈M,N,外圆P、Q以及轴肩G、H、I有较高的尺寸、位置精度和较小的表面粗糙度值,并有热处理要求。这些技术要求必须在加工中给予保证。因此,该传动轴的关键工序是轴颈M、N和外圆P、Q的加工。 2.确定毛坯 该传动轴材料为45钢,因其属于一般传动轴,故选45钢可满足其要求。 本例传动轴属于中、小传动轴,并且各外圆直径尺寸相差不大,故选择¢60mm的热轧圆钢作毛坯。 3.确定主要表面的加工方法 传动轴大都是回转表面,主要采用车削与外圆磨削成形。由于该传动轴的主要表面M、N、P、Q的公差等级(IT6)较高,表面粗糙度Ra

值(Ra=0.8 um)较小,故车削后还需磨削。外圆表面的加工方案(参考表A-3)可为: 粗车→半精车→磨削。 4.确定定位基准 合理地选择定位基准,对于保证零件的尺寸和位置精度有着决定性的作用。由于该传动轴的几个主要配合表面(Q、P、N、M)及轴肩面(H、G)对基准轴线A-B均有径向圆跳动和端面圆跳动的要求,它又是实心轴,所以应选择两端中心孔为基准,采用双顶尖装夹方法,以保证零件的技术要求。 粗基准采用热轧圆钢的毛坯外圆。中心孔加工采用三爪自定心卡盘装夹热轧圆钢的毛坯外圆,车端面、钻中心孔。但必须注意,一般不能用毛坯外圆装夹两次钻两端中心孔,而应该以毛坯外圆作粗基准,先加工一个端面,钻中心孔,车出一端外圆;然后以已车过的外圆作基准,用三爪自定心卡盘装夹(有时在上工步已车外圆处搭中心架),车另一端面,钻中心孔。如此加工中心孔,才能保证两中心孔同轴。5.划分阶段 对精度要求较高的零件,其粗、精加工应分开,以保证零件的质量。 该传动轴加工划分为三个阶段:粗车(粗车外圆、钻中心孔等),

典型轴类零件加工工艺

典型轴类零件加工工艺 一、引言 典型轴类零件是机械装置中常见的零部件之一,其加工工艺对于保证零件的精度和质量具有重要意义。本文将介绍典型轴类零件的加工工艺流程和常见的加工方法。 二、加工工艺流程 1. 材料准备 典型轴类零件的材料通常采用优质的金属材料,如钢材、铝材等。在加工前,需要对材料进行切割、锻造或铸造等工艺,以得到符合要求的材料坯料。 2. 粗加工 粗加工是对材料坯料进行初步成型的阶段。常见的粗加工方法包括车削、铣削、锯割等。其中,车削是最常用的粗加工方法之一,通过车床将材料坯料固定在主轴上,并利用刀具对其进行旋转切削,以得到所需的外形和尺寸。 3. 热处理 热处理是为了改善材料的力学性能和组织结构,提高轴类零件的硬度和耐磨性。常见的热处理方法包括淬火、回火、正火等。在热处理过程中,需要控制加热温度、保温时间和冷却速度等参数,以确保零件的质量。

4. 精加工 精加工是在粗加工的基础上对零件进行精细加工的阶段。常见的精加工方法包括磨削、镗削、拉削等。其中,磨削是最常用的精加工方法之一,通过磨床将零件与磨削工具接触,以去除表面的凸起部分,提高零件的精度和表面质量。 5. 表面处理 表面处理是为了提高零件的耐腐蚀性和美观度。常见的表面处理方法包括镀层、喷涂、抛光等。其中,镀层是最常用的表面处理方法之一,通过将零件浸泡在镀液中,使其表面形成一层保护性的金属膜,以提高零件的耐腐蚀性。 6. 检测和检验 检测和检验是为了保证零件的质量和精度。常见的检测和检验方法包括尺寸测量、外观检查、硬度测试等。其中,尺寸测量是最常用的检测和检验方法之一,通过测量零件的尺寸和形状,以判断其是否符合设计要求。 7. 组装和调试 组装和调试是将已加工好的轴类零件按照设计要求进行组装,并进行必要的调试和试运行。通过组装和调试,可以确保零件的相互配合和工作正常,以保证整个机械装置的正常运行。

轴类零件的加工工艺

轴类零件的加工工艺 一、概述 1. 轴类零件的功用、结构特点 ⑴ 功用 轴类零件是机械加工中经常遇到的零件之一,在机器中,主要用来支承传动零件如齿轮、带轮,传递运动与扭矩,如机床主轴;有的用来装卡工件,如心轴。 ⑵ 结构特点 轴类零件是旋转体零件,其长度大于直径,通常由外圆柱面、圆锥面、螺纹、花键、键槽、横向孔、沟槽等表面构成。按其结构特点分类有:光轴、阶梯轴、空心轴和异形轴(包括曲轴、半轴、凸轮轴、偏心轴、十字轴和花键轴等)图5-1 轴的种类 (a) 光轴 (b) 空心轴 (c) 半轴 (d) 阶梯轴 (e) 花键轴 (f) 十字轴 (g) 偏心轴 (h) 曲轴 (i) 凸轮轴

四类。如图5-1所示。若按轴的长度和直径的比例来分,又可分为刚性轴(L/d≤12)和挠性轴(L/d>12)两类。 2. 轴类零件的主要技术要求 ⑴加工精度 ①尺寸精度轴类零件的主要表面常为两类:一类是与轴承的内圈配合的外圆轴颈,即支承轴颈,用于确定轴的位置并支承轴,尺寸精度要求较高,通常为IT 5~IT7;另一类为与各类传动件配合的轴颈,即配合轴颈,其精度稍低,常为IT6~IT9。 ②形状精度主要指轴颈表面、外圆锥面、锥孔等重要表面的圆度、圆柱度。其误差一般应限制在尺寸公差范围内,对于精密轴,需在零件图上另行规定其几何形状精度。 ③相互位置精度包括内、外表面、重要轴面的同轴度、圆的径向跳动、重要端面对轴心线的垂直度、端面间的平行度等。 ⑵表面粗糙度轴的加工表面都有粗糙度的要求,一般根据加工的可能性和经济性来确定。支承轴颈常为0.2~1.6μm,传动件配合轴颈为0.4~3.2μm。 3. 轴类零件的材料、毛坯及热处理 ⑴轴类零件材料常用45钢,精度较高的轴可选用40Cr、轴承钢GCr15、弹簧钢65Mn,也可选用球墨铸铁;对高速、重载的轴,选用20CrMnTi、20Mn2B、20Cr 等低碳合金钢或38CrMoAl氮化钢。 ⑵轴类毛坯常用圆棒料和锻件;大型轴或结构复杂的轴采用铸件。毛坯经过加热锻造后,可使金属内部纤维组织沿表面均匀分布,获得较高的抗拉、抗弯及抗

轴类零件加工工艺设计

轴类零件加工工艺设计 轴类零件是机械制造行业中常见的零件类型之一,广泛应用于液 压机械、风机、飞机、汽车、重型设备等领域。轴类零件通常具有高 强度、低摩擦、高转速、高精度等特点,因此加工工艺设计对于保证 产品质量、提高生产效率具有重要意义。 一、工艺路线设计 轴类零件的加工路线设计是加工工艺设计的第一步。一般的加工 路线包括:原材料选择、加工方法选择、制造精度要求、热处理要求、表面处理要求、质量检验要求等。在考虑这些因素的基础上设计出最 优的加工路线,能够提高产品加工效率和质量稳定性。同时,加工路 线的合理设计也可以节省成本,提高企业的经济效益。 二、切削加工工艺设计 切削加工是轴类零件加工中常用的方法之一,常见的加工方式包 括铣削、车削、镗削、齿轮加工等。在加工轴类零件时,需要考虑到 零件材料的切削性能、切削工艺参数的选择、切削刀具的选择、切削 冷却液的选择等。在切削加工工艺设计中,应该尽可能减小切削阻力、减小加工表面粗糙度、提高加工精度和表面质量。 三、热处理工艺设计 轴类零件通常具有高强度、高精度等特点,因此热处理工艺设计 也是加工工艺设计的关键环节之一。常见的热处理方法包括淬火、回火、正火、调质等。在设计热处理工艺时,需要考虑零件的材料、零 件的用途、零件的精度等因素。正确的热处理工艺设计能够保证轴类 零件的高强度和精度稳定性。 四、表面处理工艺设计 表面处理工艺设计是为了提高轴类零件表面的质量稳定性,一般 包括磨削、腐蚀、电镀、喷涂、喷砂等。在表面处理工艺设计中,需 要考虑到零件材料、表面处理后的表面粗糙度、表面处理后的尺寸变化、表面层的耐腐蚀性等因素。正确的表面处理工艺能够为轴类零件

轴类零件加工工艺毕业设计

轴类零件加工工艺毕业设计 轴类零件加工工艺毕业设计 在机械制造领域中,轴类零件是一种常见且重要的零件类型。轴类零件的加工 工艺对于产品的质量和性能有着直接的影响。因此,对轴类零件的加工工艺进 行深入研究和设计是非常有必要的。本文将从加工工艺的选定、工艺流程的设 计以及加工设备的选择等方面,探讨轴类零件加工工艺的毕业设计。 一、加工工艺选定 轴类零件的加工工艺选定是毕业设计的核心部分。在进行加工工艺选定时,需 要考虑到零件的材料、形状、尺寸以及产品要求等因素。首先,对于不同材料 的轴类零件,其加工工艺会有所不同。例如,对于钢材轴类零件,常见的加工 工艺包括车削、铣削、钻削等;而对于铝合金轴类零件,则可以采用铣削、钻削、镗削等加工工艺。其次,零件的形状和尺寸也会对加工工艺的选定产生影响。对于较为复杂的形状和大尺寸的轴类零件,可能需要采用多道工序进行加工。最后,根据产品要求,还需要考虑到表面光洁度、精度要求等因素,选择 适合的加工工艺。 二、工艺流程设计 在确定加工工艺选定后,需要进行工艺流程的设计。工艺流程设计是将加工工 艺按照一定的顺序组合起来,形成一条完整的加工流程。在进行工艺流程设计时,需要考虑到加工工艺之间的先后关系、工艺之间的依赖关系以及工艺之间 的协调性。例如,对于一个轴类零件的加工工艺流程,可能包括车削、铣削、 钻削等多个工艺。在进行工艺流程设计时,需要确保各个工艺之间的顺序正确,避免出现工艺之间的冲突和矛盾。此外,还需要考虑到工艺之间的依赖关系,

确保前一道工艺的加工结果能够满足后一道工艺的要求。最后,还需要考虑到 工艺之间的协调性,确保整个加工流程的高效和稳定。 三、加工设备选择 加工设备的选择是轴类零件加工工艺设计的重要环节。在进行加工设备选择时,需要根据零件的形状、尺寸以及加工工艺的要求来确定合适的设备。例如,对 于较为复杂的形状和大尺寸的轴类零件,可能需要选择五轴联动加工中心或者 数控车床等高精度加工设备。而对于形状简单且尺寸较小的轴类零件,则可以 选择普通车床或者铣床等设备。此外,还需要考虑到设备的性能、精度以及稳 定性等因素,确保设备能够满足加工工艺的要求。 综上所述,轴类零件加工工艺的毕业设计需要从加工工艺选定、工艺流程设计 以及加工设备选择等方面进行深入研究和设计。通过合理地选定加工工艺、设 计合理的工艺流程以及选择适合的加工设备,可以提高轴类零件的加工质量和 性能,满足产品的要求。在进行毕业设计时,还可以结合实际案例进行分析和 研究,进一步提高设计的深度和实用性。希望本文的内容能够对轴类零件加工 工艺的毕业设计提供一定的参考和指导。

机械制造及工艺——轴类零件加工工艺

轴类零件加工工艺 第一节概述 一、轴类.件的功用和结构特点 轴类零件主要用于支承传动零件(齿轮、带轮等),承受载荷、传递转矩以及保证装在轴上零件的回转精度根据结构形状,轴的分类如图6-1所示。根据轴的长度L 与直径d 之比,又可分为刚性轴(L / d≤12 )和挠性轴(L / d > 12 )两种。(可分为光滑轴、台阶轴、空心轴和曲轴等) 轴类零件通常由内外圆柱面、内外圆锥面、端面、台

阶面、螺纹、键槽、花键、横向孔及沟槽等组成。 二、轴类零件的技术要求、材料和毛坯 装轴承的轴颈和装传动零件的轴头处表面,一般是轴类零件的重要表面,其尺寸精度、形状精度(圆度、圆柱度等)、位置精度(同轴度、与端面的垂直度等)及表面粗糙度要求均较高,是在制订轴类零件机械加工工艺规程时,应着重考虑的因素。一般轴类零件常选用45#钢;对于中等精度而转速较高的轴可用40cr ;对于高速、重载荷等条件下工作的轴可选用20Cr 和20CrMnTi 等低碳合金钢进行渗碳淬火,或用3sCrMoAIA 氮化钢进行氮化处理。轴类零件的毛坯最常用的是圆棒料和锻件,只有某些大型的、结构复杂的轴才采用铸件(铸钢或球墨铸铁)。 第二节外圆表面的加工方法和加工方案 外圆表面是轴类零件的主要表面因此要合理地制订轴类零件的机械加工工艺规程,首先应了解外圆表面的各种加工方法和加工方案。本章主要介绍常用的几种外圆加工方法和常用的外圆加工方案。 一、外圆表面的车削加工 根据毛坯的制造精度和工件最终加工要求,外圆车削

一般可分为粗车、半精车、精车、精细车。粗车的目的是切去毛坯硬皮和大部分余量。加工后工件尺寸精度IT11-IT13 ,表面粗糙度Ra50~12.5μm 。半精车的尺寸精度可达IT8~IT11 ,表面粗糙度角Ra6.3~3.2μm 。半精车可作为中等精度表面的终加工,也可作为磨削或精加工的预加工。精车后的尺寸精度可达IT7~IT8 ,表面粗糙度Ra1.6~0.8μm 。精细车后的尺寸精度可达IT6 一IT7 ,表面粗糙度Ra0.4~0.025μm 。精细车尤其适合于有色金属加工,有色金属一般不宜采用磨削,所以常用精细车代替磨削。 二、外圆表面的磨削加工 磨削是外圆表面精加工的主要方法之一。它既可加工淬硬后的表面,又可加工未经淬火的表面。根据磨削时工件定位方式的不同,外圆磨削可分为:中心磨削和无心磨削两大类。 1.中心磨削 中心磨削即普通的外圆磨削,被磨削的工件由中心孔定位,在外圆磨床或万能外圆磨床上加工。磨削后工件尺寸精度可达工IT6~IT8 ,表面粗糙度Ra0.8~0.1μm。按进给方式不同分为纵向进给磨削法和横向进给磨削法。

轴类零件加工工艺设计

动力轴零件加工工艺设计说明书 课程:机械制造技术 班级:机设zzz 指导老师:zzzzz 第2组: 学号15-27,13人, 组长zzz 副组长-zzzz 2008年11月13日

目录 设计任务书 序言 1 计算生产纲领,确定生产类型 2 审查零件图样的工艺性 3 选择毛坯 4 工艺过程设计 4.1 定位基准的选择 4.2 零件表面加工方法的选择 4.3 制订工艺路线 5 确定机械加工余量及毛坯尺寸,设计毛坯图 5.1 确定机械加工余量 5.2 确定毛坯尺寸 5.3 设计毛坯图 5.3.1 确定毛皮尺寸公差 5.3.2 确定圆角半径 5.3.3 确定拔模角 5.3.4 确定分模位置 5.3.5 确定毛坯的热处理方式 6 工序设计 6.1 选择加工设备与工艺装备 6.1.1 选择机床 6.1.2 选择夹具 6.1.3 选择刀具 6.1.4 选择量具 6.1.4.1 选择各外圆加工面的量具 6.1.4.2 选择加工孔用量具 6.1.4.3 选择加工轴向尺寸所用量具 6.1.4.4 选择加工槽所用量具 6.1.4.5 选择滚齿工序所用的量具 6.2 确定工序尺寸 6.2.1 确定圆柱面的工序尺寸 6.2.2 确定轴向工序尺寸 6.2.2.1 确定各加工表面的工序加工余量 及L6 6.2.2.2 确定工序尺寸L13、L23、L 5 6.2.2.3 确定工序尺寸L12、L11及L 21 6.2.2.4 确定工序尺寸L3

6.2.2.4 确定工序尺寸L4 6.2.3 确定铣槽的工序尺寸 7 确定切削用量及基本时间(机动时间) 7.1 工序030切削用量及基本时间的确定 7.1.1 切削用量 7.1.1.1 确定粗车外圆mm 054.05.118-φ的切削用量 7.1.1.2 确定粗车外圆mm 5.91φ、端面及台阶面的切削用量 7.1.1.3 确定粗镗孔mm 019 .00 65+φ的切削用量 7.1.2 基本时间 7.1.2.1确定粗车外圆mm 5.91φ的基本时间 7.1.2.2 确定粗车外圆mm 054.05.118-φ的基本时间 7.1.2.3 确定粗车端面的基本时间 7.1.2.4 确定粗车台阶面的基本时间 7.1.2.5 确定粗镗mm 019 .00 65+φ孔的基本时间 7.1.2.6 确定工序的基本时间 7.2 工序040切削用量及基本时间的确定 7.3 工序050切削用量及基本时间的确定 7.3.1 切削用量 7.3.1.1 确定半精车外圆mm 022.0117-φ的切削用量 7.3.1.2 确定半精车外圆mm 90φ、端面、台阶面的切削用量 7.3.1.3 确定半精车镗孔mm 074 .00 67+φ的切削用量 7.3.2 基本时间 7.3.2.1 确定半精车外圆mm 117φ的基本时间 7.3.2.2 确定半精车外圆mm 90φ的基本时间 7.3.2.3 确定半精车端面的基本时间 7.3.2.4 确定半精车台阶面的基本时间 7.3.2.5 确定半精镗mm 67φ孔的基本时间 7.4 工序060切削用量及基本时间的确定 7.4.1 切削用量 7.4.1.1 确定精镗mm 68φ孔的切削用量

轴类零件加工工艺

轴类零件加工工艺 轴类零件加工工艺 1 轴类零件旳功用、构造特点及技术规定 轴类零件是机器中常常遇到旳典型零件之一。它在机械中重要用于支承齿轮、带轮、凸轮以及连杆等传动件,以传递扭矩。按构造形式不同,轴可以分为阶梯轴、锥度心轴、光轴、空心轴、曲轴、凸轮轴、偏心轴、多种丝杠等 轴旳长径比不不小于5旳称为短轴,不小于20旳称为细长轴,大多数轴介于两者之间。 轴用轴承支承,与轴承配合旳轴段称为轴颈。轴颈是轴旳装配基准,它们旳精度和表面质量一般规定较高,其技术规定一般根据轴旳重要功用和工作条件制定,一般有如下几项:1.1 尺寸精度 起支承作用旳轴颈为了拟定轴旳位置,一般对其尺寸精度规定较高(IT5~IT7)。装配传动件旳轴颈尺寸精度一般规定较低(IT6~IT9)。 1.2 几何形状精度 轴类零件旳几何形状精度重要是指轴颈、外锥面、莫氏锥孔等旳圆度、圆柱度等,一般应将其公差限制在尺寸公差范畴内。对精度规定较高旳内外圆表面,应在图纸上标注其容许偏差。 1.3 互相位置精度 轴类零件旳位置精度规定重要是由轴在机械中旳位置和功用决定旳。一般应保证装配传动件旳轴颈对支承轴颈旳同轴度规定,否则会影响传动件(齿轮等)旳传动精度,并产生噪声。一般精度旳轴,其配合轴段对支承轴颈旳径向跳动一般为0.01~0.03mm,高精度轴(如主轴)一般为0.001~0.005mm。 1.4 表面粗糙度 一般与传动件相配合旳轴径表面粗糙度为Ra2.5~0.63μm,与轴承相配合旳支承轴径旳表面

粗糙度为Ra0.63~0.16μm。 2 轴类零件旳毛坯和材料 2.1 轴类零件旳毛坯 轴类零件可根据使用规定、生产类型、设备条件及构造,选用棒料、锻件等毛坯形式。对于外圆直径相差不大旳轴,一般以棒料为主;而对于外圆直径相差大旳阶梯轴或重要旳轴,常选用锻件,这样既节省材料又减少机械加工旳工作量,还可改善机械性能。 根据生产规模旳不同,毛坯旳锻造方式有自由锻和模锻两种。中小批生产多采用自由锻,大批大量生产时采用模锻。 2.2 轴类零件旳材料 轴类零件应根据不同旳工作条件和使用规定选用不同旳材料并采用不同旳热解决规范(如调质、正火、淬火等),以获得一定旳强度、韧性和耐磨性。 45钢是轴类零件旳常用材料,它价格便宜通过调质(或正火)后,可得到较好旳切削性能,并且能获得较高旳强度和韧性等综合机械性能,淬火后表面硬度可达45~52HRC。 40Cr等合金构造钢合用于中档精度而转速较高旳轴类零件,此类钢经调质和淬火后,具有较好旳综合机械性能。 轴承钢GCr15和弹簧钢65Mn,经调质和表面高频淬火后,表面硬度可达50~58HRC,并具有较高旳耐疲劳性能和较好旳耐磨性能,可制造较高精度旳轴。 精密机床旳主轴(例如磨床砂轮轴、坐标镗床主轴)可选用38CrMoAIA氮化钢。这种钢经调质和表面氮化后,不仅能获得很高旳表面硬度,并且能保持较软旳芯部,因此耐冲击韧性好。与渗碳淬火钢比较,它有热解决变形很小,硬度更高旳特性。 3 轴类零件一般加工规定及措施 3.1 轴类零件加工工艺规程注意点 在学校机械加工实习课中,轴类零件旳加工是学生练习车削技能旳最基本也最重要旳项目,但学生最后竣工工件旳质量总是很不抱负,通过度析重要是学生对轴类零件旳工艺分析工艺规程制定不够合理。

相关主题
相关文档
最新文档