深度学习可视化分析发展概览

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

深度学习可视化分析发展概览

 前言

 深度学习由于对传统方法较为困难处理的问题有着十分优秀的解决,所以近年来在各个领域飞速发展。但由于内部的复杂性和网络中的非线性结构,人们对于深度神经网络取得高水平表现的潜在原因并不清晰,理解其中的决策过程也充满了挑战,对于网络的解读也充满了神秘。随着深度学习向各个领域的广泛渗透,我们需要为用户提供一种可以理解深度学习的工具,让人们可以明白网络何时在正确的工作,什幺时候失效,同时也有助于提高算法的性能。

 目前,标准化的神经网络工具箱让深度学习的构建变得十分容易,而今对于系统的可视化分析又在帮助着我们解释、解读、调整和改进网络。我们在这篇文章中呈现了目前对于深度学习可视化分析的方法,总结了先进的分析框架,主要集中在5w1h上(即why,who,what,how,when和where)来总结深度学习视觉分析方面的研究成果。同时,这篇论文还归纳了这一领域的研究方向和尚未解决的问题以供参考。这篇论文可以帮助深度学习和可视化分析领域的新研究者和从业者尽快的掌握这一年轻又迅速发展的领域以及其中的分类和范围。

 深度学习的强大和迅速发展有目共睹,但这也带来了独特和全新的挑战,

相关文档
最新文档