农作物遥感估产的应用研究进展

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

农作物遥感估产的应用研究进展

摘要:遥感估产作为一种新型的农作物估产方法,越来越引起人们的重视。本文介绍了农作物遥感估产的基本原理、内容、基本程序以及国内外的研究进展,并对未来农作物遥感估产做了一个简单的展望。

关键字:遥感估产原理程序研究进展

遥感起源于20 世纪60 年代, 它是指在一定距离上,应用探测仪器不直接接触目标物体,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。从它诞生50 多年来,因具有获取资料速度快、周期短和信息量大等特点已被广泛应用于资源调查、地质调查、大气监测、灾害环境监测、土壤调查、城市环境调查、水文观测等领域,并取得了明显的效益。其中农业领域是遥感的最大用户和主要受益者,作物遥感估产是它应用的一个重要方面。

1、遥感估产的概念、基本原理及基本程序

1.1 遥感估产的基本原理及主要内容

1.1.1 遥感估产的特点与基本原理

传统的作物估产基本上是农学模式和气象模式,采用人工区域调查方法。它们把作物生长与主要制约和影响产量的农学因子或气候因子之间用统计分析的方式建立起关系。这类模式计算繁杂、方法速度慢、工作量大、成本高、某些因子种类往往难以定量化,不易推广应用。农作物遥感估产是近几十年发展起来的一门新兴技术,它具有宏观、客观、快速、经济和信息量大等特点, 在实际应用中显示出了独有的优越性。概括地说,农作物遥感估产是根据生物学原理,在收集分析各种农作物不同生育期不同光谱特征的基础上,通过平台上的传感器记录的地表信息,辨别作物类型,监测作物长势,建立不同条件下的产量预报模型从而在作物收获前就能预测作物总产量的一系列技术方法。根据遥感资料来源的不同,农作物遥感估产可分为空间遥感作物估产和地面遥感作物估产。前者又包括以应用卫星资料为主的航天遥感作物估产和以应用飞机航测资料为主的航空遥感作物估产,估产的范围广、宏观性强。后者是根据地面遥感平台获取的农作物光谱信息进行估产,估产范围较小。

1.1.2 遥感估产的主要内容

作物遥感估产主要包括以下几个方面的内容:

(1)作物的识别及长势监测任何物体都具有吸收和反射不同波长电磁波的特性。不同物体的波谱特性不同,利用卫星照片可以区分出农田和非农田、同种作物和非同种作物。用可见光和近红外波段的差值可区分农作物与土壤和水体。识别作物类型,一方面可以根据近红外波段反射率的差别,主要是因为不同作物叶片的内部结构不同;另一方面是利用多时相遥感。不同作物的播种、生长、收割的时间不同,利用遥感信息的季节、年度变化规律,结合区域背景资料,可以有效地识别作物。而农作物长势监测指对作物的苗情、生长状况及其变化的宏观监测,即对作物生长状况及趋势的监测。杨邦杰等将作物长势定义为包括个体和群体两方面的特征,叶面积指数LAI 是与作物个体特征和群体特征有关的综合指标,可以作为表征作物长势的参数。利用红波段和近红外波段的遥感信息,得到的归一化植被指数(NEVI)与作物的叶面积指数(LAI)和生物量呈正相关,可以用遥感图像获取作物的NDVI 曲线反演计算作物的LAI,进行作物长势监测。

(2)作物种植面积的提取和监测不同作物在遥感影像上呈现不同的颜色、纹理、形状等特征信息,利用信息提取的方法,可以将作物种植区域提取出来,从而得到作物种植面积

和种植区域。

(3)作物产量估算遥感估产是基于作物特有的波谱反射特征,利用遥感手段对作物产量进行监测预报的一种技术。利用影像的光谱信息可以反演作物的生长信息(如LAI、生物量),通过建立生长信息与产量问的关联模型(可结合一些农学模型和气象模型),便可获得作物产量信息。在实际工作中,常用植被指数(由多光谱数据经线性或非线性组合而成的能反映作物生长信息的数学指数)作为评价作物生长状况的标准。

1.2 遥感估产的基本程序农作物遥感估产的过程大体上可以分为八个步骤:

(1)遥感信息获取与处理;

(2)遥感估产区划;

(3)地面采梯点布设及观测;

(4)建立背莆数据库;

(5)农作物种植面积的提取;

(6)长势及灾害监测;

(7)建立遥感估产模型;

(8)估算总产并对其精度进行评估。

1.2.1 遥感信息获取与处理

遥感信息源的选取首先要考虑满足技术要求,同时也要兼顾经济效益,好的信息源对估产将起到事半功倍的效果。

1.2.2 遥感估产区划

遥感技术用于农作物生长的动态监测和估产是大面积的应用,需要将自然条件、社会环境以及农作物的生长状况基本相同的地区归类,以便于作物生长状况的监测与估产模型的构建。

1.2.3 地面采梯点布设及观测

遥感估产中的信息主要是来自于遥感信息,但是为了得到高精度的作物种植面积和产量光靠遥感信息是不够的,必须在地面布设足够的样点,监测作物实际生长状况和产量作为遥感信息的补充和验证。

1.2.4 建立背莆数据库

在遥感估产中,建立数据库是一项重要的基础性工作,它收集和存储了估产区自然环境和社会环境等方面的信息。背景数据库主要有 2 个方面的作用:一是为遥感信息分类提供背景资料,使分类精度提高;二是在遥感信息难以获取时,它支持模型分析,从历史资料和实际样点采集的数据中综台分析,取得当年实际种植面积和产量。

1.2.5 农作物种植面积的提取

农作物播种面积的提取是农作物估产中的关键。常利用TM 资料进行计算机自动分类NOAA 资料混合像元的分解及在GIS 支持下的作物播种面积的提取方法。

1.2.6 长势及灾害监测

监测的主要方法是对不同生长期的植被指数监测,根据植被指数的变化以及与资料的对比,就可以及时获得各种作物在不同生长期的长势,由长势情况就能预测出作物的趋势产量。而灾害对农作物产量的影响既具有突发牲,又很直接。

1.2.7 建立遥感估产模型

建立避感估产模型是农作物估产的核心问题,模型的好坏直接决定估产的精度。

1.2.8 估算总产并对其精度进行评估

利用遥感估产集成系统对作物进行估产。另外,由于“精度”直接标志着整个估产结果的可信度,为了保证最终的精度要求需要在每个环节上尽量减少误差的可能性。

2.1 国外遥感估产的研究进展

相关文档
最新文档