光学信息处理实验

光学信息处理实验
光学信息处理实验

光学信息处理实验

阿贝成像与空间滤波实验 .............................. 1 θ调制 . (4)

光栅自成像实验 (7)

马赫—泽德干涉仪 (9)

阿贝成像与空间滤波实验

光学信息处理是在上世纪中叶发展起来的一门新兴学科, 1948年首次提出全息术,1955年建立光学传递函数的概念,1960年诞生了强相干光——激光,这是近代光学发展历史上的三件大事。而光学信息处理的起源,可以追溯到阿贝的二次成像理论的提出和空间滤波技术的兴起。空间滤波的目的是通过有意识地改变像的频谱,使像产生所希望地变换。光学信息处理则是一个更为广阔地领域,它主要是用光学方法实现对输入信息的各种变换或处理。阿贝于1893年,波特于1906年为验证这一理论所作的实验,说明了成像质量与系统传递的空间频谱之间的关系。

实验目的

频谱滤波实验是信息光学中最典型的实验,通过对频谱的观察和动手完成阿贝——波特实验(方向滤波),高通滤波、低通滤波实验,可加深对傅立叶信息光学中的空间频率、空间频谱、空间滤波和阿贝成像原理的理解和认识。首先,叙述一下实验原理。

实验原理

阿贝认为在相干的平行光照明下,透镜的成像可以分为两步,第一步是平行光透过物体后产生的衍射光,经透镜后在其后焦面上形成衍射图样。第二步是这些衍射图上的每一点可以看作是相干的次波源,这些次波源发出的光在像平面上相干叠加,形成物体的几何像。

成像的这两步,从频谱分析的观点来看,本质上就是两次傅立叶变换,如果物光的复振幅分布是g(x 0,y 0),可以证明在物镜后焦面),(ηξ上的复振幅分布是g(x 0,y 0)的傅立叶变换G ),(y x f f (只要令f

f f f y x ληλξ==,;λ为波长,?为透镜的焦距)。所以第一步就是将物光场分布变换为空间频率分布,衍射图所在的后焦面称频谱面(简称谱面或者傅氏面)。第二步是将谱面上的空间频率分布作逆傅氏变换还原成为物的像(空间分布)。按照频谱分析理论,谱面上的每一点均有以下四点明确的物理意义。

第一点:谱面上任一光点对应着物面上的一个空间频率分布。

第二点:光点离谱面中心的距离标志着物面上该频率成分的高低,离中心远的点代表物面上的高频成分,反映物的细节部分。靠近中心的点,代表物面的低频成分,反映物的粗轮廓,中心亮点是0级衍射即零频,她不包含任何物的信息,所以反映在像面上呈现均匀的光

斑而不能成像。

第三点:光点的方向是指出物平面上该频率成分的方向,例如横向的谱点表示物面有纵向栅缝。

第四点:光点的强弱则显示物面上该频率成分的幅度大小。

如果在谱面上人为的插上一些滤波器(吸收板可移相板)以改变谱面上的光场分布,就可以根据需要改变像面上的光场分布,这就叫空间滤波。最简单的滤波器就是一些特种形状的光阑。把这种光阑放在谱面上,使一部分频率分量能通过而挡住其它的频率分量,从而使像平面上的图像中某部分频率得到相对加强或者减弱,以达到改善图像质量的目的。常用的滤波方法有如下这些。

1.低通滤波

低通滤波目的是滤去高频成分,保留低频成分,由于低频成分集中在谱面的光轴(中心)附近,高频成分落在远离中心的地方,所以,低通滤波器就是一个圆孔。图像的精细结构及突变部分主要由高频成分起作用,所以经过低通滤波器滤波后图像的精细结构将消失,黑白突变处也变的模糊。

2.高通滤波。高通滤波目的是滤去低频成分而让高频成分通过,滤波器形状是一个圆屏。其结果正好与前面的低通滤波相反,是使物的细节及边缘清晰。

3.方向滤波(波特实验)。只让某一方向(如横向)的频率成分通过,则像面上将突出了物的纵向线条。这种滤波器呈狭缝状。

实验仪器

L :准直透镜 O :物(光栅) L 2、L 1:付里叶变换透镜 P 1:频谱面

P 2:像平面 M :全反射镜 C :扩束镜 E :光栅

图1 实验装置光路图

物面O 处可放置透射的一维光栅和正交光栅(网格),谱面处放各种滤波器(形状不同的光阑,狭缝等)。按图1调节光路,使激光束经过C 、L 扩束后准直后,形成大截面的平行光照在物面上,移动L 1使像面P 2上得到一个放大的实像,并使谱面的衍射图适于各种滤波器的大小,以便于滤波处理。例如当mm f 250=时,则可选光栅常数mm d 1.0=;像面(x ,y )可以放得比较远一些,能获得较大的放大倍数,以便看到光栅清晰放大的像。

首先,观察空间滤波的现象。物面上放置一维光栅,光栅条纹沿铅直方向,频谱面上可以看到水平排列的等间距衍射光点如图2(a )所示,中间最亮的点为0级衍射,两侧分别为2,1±±,……级衍射点。像面上可以看到黑白相间且界线明显的光栅像。

实验步骤

±级衍射通过,如一.在频谱面上可以放一个可调狭缝,逐步缩小狭缝,使只有0级,1

图2(b)。像面上光栅像变为正弦形,光栅间距不变。但明暗条纹之间是逐步渐变的。

二.进一步缩小狭缝,仅使0级衍射通过,如图2(c),这时像面上虽然有亮斑,但不出现光栅像。

±级通过,如图2(d),则像面上的光栅像的空间频三.在谱面上加上光阑,使0级,2

率加倍。

四.用光阑挡去0级衍射而使其它衍射光通过,如图2.2(e),则像面上发生反衬度的半反转,即原来的暗条纹的中间出现细亮线,而原来的亮条纹仍然是亮的。

(a)(b)(c)

(d)(e)

图2空间滤波

θ调制

θ调制彩色合成概况

阿贝成像理论,成功地提出了“频域”概念,以及二次成像过程。θ调制彩色合成(分光滤波)是阿贝成像基本原理的应用,是基于改变频谱,从而获得需要的像,即将原始像变换成按一定角度的光栅调制像,将该调制像置于光路中,当用白光照明后进行适当的空间滤波处理,实现假彩色编码,从而得到彩色的输出像;当使用单色光照明,则在像平面上各部分呈现不同的灰度,得到有着明暗变化的输出像。

θ调制彩色合成原理

θ调制就是以不同取向的光栅,调制物平面的不同部位,经过空间滤波以后,使像平面上各相应部位呈现不同的色彩。

这里物平面上放置的是用全息照相方法制作的一个θ调制图像(θ

调制板),即由不同取向的光栅组成的图像,例如图1所示图中的大地(草地)、房子、天空分别由三个不同取向的光栅组成,这里三个光栅取向各相差0

60。

图1 θ调制板

图2 θ调制彩色合成原理图

光源I 经透镜扩束为平行光束照射物1P (θ调制板),经透镜1L 在2P 上呈现频谱,2

P 即为频谱面,也为滤波面,再经过成像透镜2L ,将物成像在

3P 上。这时在2P 平面上可以看到

光栅的彩色衍射图,如图

3所示:

图3θ调制彩色合成频谱

三个不同取向的衍射极大值是相应于不同取向的光栅,也就是分别相应于图像中的天空、房子和草地,此时这些衍射极大值除了零级以外都有色散,波长短的蓝光具有较小的衍射角,其次为绿光,而红光的衍射角最大。

通过在2

P面上对相应像的光的频谱操作,就会在屏上出现所想要物的彩色像,如:蓝天、红房、绿草地的彩色图像,如图所示:

θ

2.3 空间滤波

典型的三透镜滤波系统如图2.7所示:

图2.7 三透镜系统

两次傅立叶变换的任务各由一个透镜承担。两透镜之间的距离是两透镜的焦距之和,系

蓝天

红房子

绿草地

统的垂轴放大率等于两个透镜焦距之比。

有时为了简单起见,常取两者焦距相等,于是从输入平面到输出平面之间,各个元件相距f,这种系统简称为4f 系统。若输入透明片置于1P 平面上,其复振幅透过率为()y x f ,,用

单位振幅的相干平面波垂直照射,则在2p 平面上得到物体的频谱???? ??f y f

x F λλ22,;若在这个平面上放置滤波器,令其振幅透过率()22,y x t 正比于

???? ??f y f x H λλ22,,则滤波器后方的广场分布等于两个函数相乘,即???? ?????? ?

?f y f x H f y f x F λλλλ2222,,。这样,就在3L 的后焦面上即输出平面上得到两个函数乘积的傅立叶变换,在我们采用的反演坐标系下,输出平面光场的复振幅分布为:

()=33,y x g F 1-{

???? ?????? ??f y f x H f y f x F λλλλ2222,,}=()()3333,*,y x h y x f 式中:()33,y x f 是物体()11,y x f 的几何像;h 是H 的逆傅立叶变换,称为滤波器的脉冲响应。从频域来看,系统改变了输入信息的空间频谱结构,这就是空间滤波或频域综合的含义;从空域来看,系统实现了输入信息与滤波器脉冲响应的卷积,完成了所期望的一种变换。

实验原理

图4.2 θ调制彩色合成原理图

图4.2中,1P 、2P 、

3P 分别为物面、频谱面和像面,L 为准直透镜,1L 和2L 都为变换

透镜。 实验步骤

白光点光源I 通过透镜L 准直后照射1P (物光栅,即θ调制板),经过透镜1L 在1(液晶空间光滤波器)上呈现出彩色频谱,为实验中滤波器实现选频,往往是用一个纸板充当,在纸板上呈现颜色的相应部位扎孔,从而达到滤波的作用;或者用一块熏黑的玻璃板充当滤波器,当需要什么颜色时,就在相应颜色部位用针尖抹去烟灰,从而“滤波”。通过一级频谱带滤波的作用,实现想得到最终像为蓝天、绿地、红房子。

光栅自成像实验

实验目的

掌握光栅自成像原理,学习观察光栅自成像方法,了解学习光栅自成像应用,掌握干涉滤光片特性,学习通过观察光栅自成像确定光源的谱线宽度和测量相干长度。

实验原理

光栅自成像也称泰伯效应,它是一种不需透镜成像的过程。如图1所示,用单色平面波照射光栅,在光栅前后能多次成像,多次成像是等间距的,成在光栅前的像为虚像,成在光栅后的像是实像。

设光栅的振幅透射系数为

()()111,0.50.5cos 2t x y x d π=+ (1)

式中d 为光栅常数。如果单位振幅平面波垂直照明光栅,则刚刚透过光栅的光场为

图1 光栅自成像原理图

()()~1111,,E x y t x y = (2)

被光栅调制的光场()~

11,E x y 传播到菲涅耳衍射区在离光栅的距离为z 的平面上,光场的复振幅分布为

()()()()()~2211111,0.50.5cos 2exp 2ikz e ik E x y x d x x y y dx dy i z z πλ∞-∞????=+-+-????????……(3) 式中作1x x ω-=的变量代换,并由于积分

()()21211exp 2ik y y dy i z z λ∞-∞??-=?????………………………(4) 则(3)式变为:

()()()()()()~

2111,exp 2exp 2exp 2244ikz e E x y i x i x ik z d i z πωπωωωλ∞-∞??=+-+-- ????………(5) 其中:

()()122exp 2ik z d i z ωωλ∞-∞=?

()()()()()1222exp 2exp exp 2exp i x d ik z d i z i x d i zd πωωωλπλπ∞--∞??-=-??

?()()()()()12

22exp 2exp exp 2exp i x ik z d i z i x d i zd πωωωλπλπ∞

--∞??--=--??? 因此(5)式可化为:()~

20.50.5exp cos 2E i zd x d λππ-??=+-?? (6)

上式中已略去括号前对强度分布没有影响的常数相位因子()exp ikz 。可见正弦光栅菲涅耳衍射的复振幅分布()~

,E x y 与光栅的振幅透射系数只相差一个与位置z 有关的相位因子。 实验装置

图2光栅自成像实验装置图

干涉滤光片(将光源发出的光变成单色光) 透镜 光栅 测微目镜

实验步骤

(1)调节光路,经过滤光片后出射一束红光照射在透镜上,光束经透镜后变为平行光入射到光栅上。

(2)调节读数显微镜的位置,观察到清晰的条纹。

(3)逐渐移动读数显微镜,逐渐拉远显微镜,条纹边的模糊,到了一定距离又出现清晰条纹。记录两次出现条纹时显微镜变化距离

(4)逐渐移动读数显微镜,逐渐拉远显微镜,到了一定距离以后再不出现条纹了。

图3 光栅像 图4光栅像强度变化曲线

光栅到毛玻璃屏的轴向距离148z mm =。正弦光栅菲涅耳衍射的复振幅分布()~,x y E 与光栅的振幅透射系数只相差一个与位置z 有关的相位因子。显然当22z md =

()0,1,.....m =±时,

菲涅耳衍射的振幅分布与光栅的振幅透射系数完全相同,为光栅的自成像,满足式的自成像的距离z 称为泰伯效应。条纹的光强度沿x 轴方向作余弦平方变化,变化曲线如图4所示。

思考题

如何通过光栅自成像测量滤波器带宽和光源的相干长度,如何实现两光栅非接触获得莫尔条纹。

马赫—泽德干涉仪

一实验目的

1 掌握马赫-泽德干涉原理与调整

2学会调整马赫-泽德干涉平行光的方法

二实验原理

1 干涉光路原理

马赫-泽德干涉仪是一种用分振幅法产生双光束以实现干涉的仪器。如图1所示,它主要由两块50%的分束镜BS1,BS2和两块全反射镜M1,M2组成,四个反射面互相平行,中心光路构成一个平行四边形。扩束镜C和准直镜L共焦以后产生平行光。平行光射到BS1上分成两束,这两束光经过M2,M3反射在BS2上相遇产生干涉,在BS2后的白屏(或毛玻璃屏)P上可观察到干涉条纹。如条纹太细可用显微镜接收。可以看到,此时的干涉条纹为等距直条纹。当改变两束光的夹角时,干涉条纹的间距会发生变化;当改变其中一束光的光程时,条纹对比度随之而变;当人为地制造一些震动时,干涉花样的清晰度将不能很好地保持。

图1 马赫—泽德干涉光路

2 调整平行光的方法

以图1为例,在M1后面适当位置放入准直透镜L,微调透镜L的Z轴方向微调旋钮(“旋转”旋钮及“俯仰”旋钮),使激光束垂直入射在L的光心上,实现共轴调整,此时可在L前后看到一系列光点和激光束主光线在同一直线上,无一光点发生偏离。在L和M1 之间放入扩束镜C,使C和L之间的距离大约为C和L的焦距之和,在C后放入一白屏,微调C的“旋钮”,“俯仰”旋钮,使扩束后在白屏上得一均匀的高斯斑并且使C和L共周;沿光轴方向微调C,改变C和L之间的距离,使扩束准直后的光斑在较长距离(几米)内不发生变化,即得到平行光。

三实验仪器:

氦氖激光器M1,M2,M3:全反射镜C:扩束镜L:准直透镜BS1,BS2 0.5:0.5分束镜P:白屏

四实验步骤:

1 点燃激光器

2 调平行光

3 按光路搭接实验器件

4 全光路调整

五实验内容

1 在白屏上观察平行,等距的直条纹的间距,微调M2和M3的旋转旋钮改变两束光的夹角观

察干涉条纹间距的变化情况,并分析原因。

2 改变M3的位置实现改变干涉仪一臂的臂长,观察干涉条纹的对比度有什么变化,析光远

的相干长度对干涉条纹的影响。

3 用手轻轻按一下防震台面,或触摸一下台上的光学元件支座,观察干涉花样有什么变化,

记录条纹恢复稳定所需的时间,可判断防震台的消震性能(一般应在5秒内恢复)。

4 在防震台周围走动,跳跃,或用手在马赫-泽德干涉光路的一臂中扰动空气,观察干涉花

样清晰度的变化并测定条纹清晰度恢复所需的时间,可了解防震台的隔震性能(一般应在3秒内恢复)。

5 观察条纹在没有自身冲击和外界干扰的情况下,条纹漂移情况。一般说来,5分钟条纹漂

移不超过一才合格。

马赫—泽德干涉仪测定空气的折射率

一实验目的:

学会用马赫-泽德干涉仪测定空气的折射率。

二实验原理

本实验采用了如图2所示的马赫-泽德干涉仪,其原理是利用两束光干涉的方法测定空气的折射率。马赫-泽德干涉仪的干涉条纹稳定,不易受外界干扰,所以易分辨清楚。如果气室长度相同,马赫-泽德干涉仪条纹移动的数目N将比迈克尔逊干涉仪干涉条纹移动的数目N少一半,虽然理论上马赫-泽德干涉仪测量空气折射率的精度是迈克尔逊干涉仪精度一半,但马赫-泽德干涉仪光路长,实际充气管都很长,所以测量精度依然很高。

三实验仪器:

P1,P2为分光板,M1,M2为反射镜,L1为扩束镜,L2为准直透镜,用He-Ne激光作光源,在光路I中放置一气室,气室两端用圆形玻璃片密封,气室下方接一,个三通阀, 阀的一端接机械真空泵,另一端接针状放气管,为进行光程补偿,在光路I中加两块与气室玻璃窗厚度与材质皆相同的玻璃片,补偿色散。

干涉条纹

补偿片

图2马赫-泽德干涉仪测定气体折射率

四 实验步骤: 实验时,按其光路,调节各元件,使在屏上出现间距较宽(便于观察)

的稳定干涉条纹,然后将气室抽成真空,设其光程差为L n 0 (0n 为真空

折射率, L 为气室长度),再通过针阀使待测气体缓慢进入气室,直到与抽空前大气压相同,这时气室这段光程由L n 0变为nL(n 为空气的折射

率),相应的条纹移动数目为N,由光的干涉原理可知,移动一条干涉条纹,相当与光程差改变一个波长,于是得

L N L n nL λ=-0 (1) L

N n n λ+=0 (2) 五 实验结果 实验要重复多次,每次对气室抽空应达10-2mmHg ,真空度用真空计测量 (或用火花放电器根据气体放电颜色判断),实验过程中室温应保持变化很小,通过针阀向气室充待气体时又非常缓慢,可认为实验是在等温条件下进行的,不考虑温度变化对折射率的影响,

把各相关量计算代入公式(2)。把实验测得空气折射率的平均值与实际值1.0002917(λ=632.8nm )比较,计算相对和绝对误差。

一般实验的测量空气的折射率比的公认值(n=1.0002917)偏小,主要原因是由于气室内的真空度不够高,这样

0n >1,而使光程差变小,N 值偏小,另外n=1.0002917是指在标准温度(00C )、标准压力(p=1.013?105Pa )和干燥空气条件下,本实验条件与上述的条件不同。

屏补偿片

针状放气管

三通

气室接机械真空泵

(注:素材和资料部分来自网络,供参考。请预览后才下载,期待你的好评与关注!)

光电探测技术实验报告

光电探测技术实验报告 班级:08050341X 学号:28 姓名:宫鑫

实验一光敏电阻特性实验 实验原理: 光敏电阻又称为光导管,是一种均质的半导体光电器件,其结构如图(1)所示。由于半导体在光照的作用下,电导率的变化只限于表面薄层,因此将掺杂的半导体薄膜沉积在绝缘体表面就制成了光敏电阻,不同材料制成的光敏电阻具有不同的光谱特性。光敏电阻采用梳状结构是由于在间距很近的电阻之间有可能采用大的灵敏面积,提高灵敏度。 实验所需部件: 稳压电源、光敏电阻、负载电阻(选配单元)、电压表、 各种光源、遮光罩、激光器、光照度计(由用户选配) 实验步骤: 1、测试光敏电阻的暗电阻、亮电阻、光电阻 观察光敏电阻的结构,用遮光罩将光敏电阻完全掩 盖,用万用表测得的电阻值为暗电阻 R暗,移开遮光罩,在环境光照下测得的光敏电阻的 阻值为亮电阻,暗电阻与亮电阻之差为光电阻,光 电阻越大,则灵敏度越高。 在光电器件模板的试件插座上接入另一光敏电阻, 试作性能比较分析。 2、光敏电阻的暗电流、亮电流、光电流 按照图(3)接线,电源可从+2~+8V间选用,分别在暗光和正常环境光照下测出输出电压V暗和V亮则暗电流L暗=V暗/R L,亮电流L亮=V亮/R L,亮电流与暗电流之差称为光电流,光电流越大则灵敏度越高。 分别测出两种光敏电阻的亮电流,并做性能比较。 图(2)几种光敏电阻的光谱特性 3、伏安特性: 光敏电阻两端所加的电压与光电流之间的关系。 按照图(3)分别测得偏压为2V、4V、6V、8V、10V、12V时的光电流,并尝试高照射光源的光强,测得给定偏压时光强度的提高与光电流增大的情况。将所测得的结果填入表格并作出V/I曲线。 注意事项: 实验时请注意不要超过光电阻的最大耗散功率P MAX, P MAX=LV。光源照射时灯胆及灯杯温度均很高,请勿用手触摸,以免烫伤。实验时各种不同波长的光源的获取也可以采用在仪器上的光源灯泡前加装各色滤色片的办法,同时也须考虑到环境光照的影响。

数字图像处理实验指导书-河北工业大学2014实验一

数字图像处理 实验指导书 河北工业大学 计算机科学与软件学院

实验一 MATLAB数字图像处理初步 一、实验目的与要求 1.熟悉及掌握在MATLAB中能够处理哪些格式图像。 2.熟练掌握在MATLAB中如何读取图像。 3.掌握如何利用MATLAB来获取图像的大小、颜色、高度、宽度等等相关信息。 4.掌握如何在MATLAB中按照指定要求存储一幅图像的方法。 5.图像类型转换。 二、实验原理及知识点 1、数字图像的表示和类别 一幅图像可以被定义为一个二维函数f(x,y),其中x和y是空间(平面)坐标,f 在任何坐标处(x,y)处的振幅称为图像在该点的亮度。灰度是用来表示黑白图像亮度的一个术语,而彩色图像是由单个二维图像组合形成的。例如,在RGB彩色系统中,一幅彩色图像是由三幅独立的分量图像(红、绿、蓝)组成的。因此,许多为黑白图像处理开发的技术适用于彩色图像处理,方法是分别处理三副独立的分量图像即可。 图像关于x和y坐标以及振幅连续。要将这样的一幅图像转化为数字形式,就要求数字化坐标和振幅。将坐标值数字化称为采样;将振幅数字化成为量化。采样和量化的过程如图1所示。因此,当f的x、y分量和振幅都是有限且离散的量时,称该图像为数字图像。 作为MATLAB基本数据类型的数值数组本身十分适于表达图像,矩阵的元素和图像的像素之间有着十分自然的对应关系。

图1 图像的采样和量化 根据图像数据矩阵解释方法的不同,MA TLAB把其处理为4类: 亮度图像(Intensity images) 二值图像(Binary images) 索引图像(Indexed images) RGB图像(RGB images) (1) 亮度图像 一幅亮度图像是一个数据矩阵,其归一化的取值表示亮度。若亮度图像的像素都是uint8类或uint16类,则它们的整数值范围分别是[0,255]和[0,65536]。若图像是double类,则像素取值就是浮点数。规定双精度型归一化亮度图像的取值范围是[0,1] (2) 二值图像 一幅二值图像是一个取值只有0和1的逻辑数组。 (3) 索引图像 索引颜色通常也称为映射颜色,在这种模式下,颜色都是预先定义的,并且可供选用的一组颜色也很有限,索引颜色的图像最多只能显示256种颜色。 一幅索引颜色图像在图像文件里定义,当打开该文件时,构成该图像具体颜色的索引值就被读入程序里,然后根据索引值找到最终的颜色。(4) RGB图像 一幅RGB图像就是彩色像素的一个M×N×3数组,其中每一个彩色相

数字图像处理实验三中值滤波和均值滤波实验报告

数字图像处理实验三中值滤波和均值滤波实验报告

数字图像处理实验三 均值滤波、中值滤波的计算机实现12281166 崔雪莹计科1202班 一、实验目的: 1)熟悉均值滤波、中值滤波处理的理论基础; 2)掌握均值滤波、中值滤波的计算机实现方法; 3)学习VC++ 6。0 的编程方法; 4)验证均值滤波、中值滤波处理理论; 5)观察均值滤波、中值滤波处理的结果。 二、实验的软、硬件平台: 硬件:微型图像处理系统,包括:主机, PC机;摄像机; 软件:操作系统:WINDOWS2000或WINDOWSXP应用软件:VC++ 6.0 三、实验内容: 1)握高级语言编程技术; 2)编制均值滤波、中值滤波处理程序的方法; 3)编译并生成可执行文件; 4)考察处理结果。 四、实验要求: 1)学习VC++确6。0 编程的步骤及流程; 2)编写均值滤波、中值滤波的程序;

3)编译并改错; 4)把该程序嵌入试验二给出的界面中(作适当修改); 5)提交程序及文档; 6)写出本次实验的体会。 五、实验结果截图 实验均值滤波采用的是3X3的方块,取周围的像素点取得其均值代替原像素点。边缘像素的处理方法是复制边缘的像素点,增加一个边框,计算里面的像素值得均值滤波。

六、实验体会 本次实验在前一次的实验基础上增加均值滤波和中值滤波,对于椒盐噪声的处理,发现中值滤波的效果更为好一点,而均值滤波是的整个图像变得模糊了一点,效果差异较大。本次实验更加增加了对数字图像处理的了解与学习。 七、实验程序代码注释及分析 // HistDemoADlg.h : 头文件 // #include "ImageWnd.h" #pragma once // CHistDemoADlg 对话框 class CHistDemoADlg : public CDialogEx { // 构造

光学仪器实验报告

常用光电仪器原理及使用 实验报告 班级:11级光信息1班 姓名:姜萌萌 学号:110104060016 指导老师:李炳新

数字存储示波器 一、实验目的 1、熟悉数字存储示波器的使用方法; 2、测量数字存储示波器产生方波的上升时间; 二、实验仪器 数字存储示波器 三、实验步骤 1、产生方波波形 ⑴、打开示波器电源阅读探头警告,然后按下OK。按下“DEFAULT SETUP”按钮,默认的电压探头衰减选项是10X。 ⑵、在P2200探头上将开关设定到10X并将探头连接到示波器的通道1上,然后向右转动将探头锁定到位,将探头端部和基线导线连接到“PROBE COMP”终端上。 ⑶、按下“AUTOSET”按钮,在数秒钟内,看到频率为1KHz 电压为5V峰峰值得方波。按两次CH1BNC按钮删除通道1,

按下CH2BNC按钮显示通道2,重复第二步和第三步。 2、自动测量 ⑴、按下“MUASURE”按钮,查看测量菜单。 ⑵、按下顶部的选项按钮,显示“测量1菜单”。 ⑶、按下“类型”“频率”“值”读书将显示测量结果级更新信息。 ⑷、按下“后退”选项按钮。 ⑸、按下顶部第二个选项按钮;显示“测量2菜单”。 ⑹、按下“类型”“周期”“值”读数将显示测量结果与更新信息。 ⑺、按下“后退”选项按钮。 ⑻、按下中间选项按钮;显示“测量3菜单”。 ⑼、按下“类型”“峰-峰值”“值”读数将显示测量结果与更新信息。 ⑽、按下“后退”选项按钮。 ⑾、按下底部倒数第二个按钮;显示“测量4菜单”。⑿、按下“类型”“上升时间”“值”读数将显示测量结果与更新信息。

LCR测试仪 一、实验目的 1、熟悉LCR测试仪的使用方法; 2、了解LCR测试仪的工作原理; 3、精确测量一些电阻,电感,电容的值; 二、实验仪器 LCR测试仪,电阻,电容,电感等元件 三、LCR测试原理 根据待测元器件实际使用的条件和组合上的差别,LCR 测量仪有两种检测模式,串联模式和并联模式。串联模式以检测元器件Z为基础,并联模式以检测元器件的导纳Y为基础,当用户将测出流过待测元件的电流I,数字电压表将测出待测元件两端的电压V,数字鉴相器将测出电压V和电流I 之间的相位角 。检测结果被储存在仪器内部微型计算机的

基于MATLAB光学信息处理结果的模拟

主要符号表 λ 入射光的波长 0 r 狭缝到接收屏的距离 a 缝宽(矩形孔的长度) b 矩形孔的宽度 d 缝间距 r 圆孔半径 θ 衍射角 f 透镜的焦距 x 屏上横向坐标 y 屏上纵向坐标 0I 0P 点的光强 I P 点的光强

1 绪论 1.1MATLAB语言用于计算机模拟的优势 有过计算机语言编程经验的人可能都会有这样的体会,当我们进行程序设计时,特别是当程序涉及到矩阵运算或绘图时,程序的编程过程是比较繁琐的,尤其是当我们需要编出一个通用程度较高的程序时就更为麻烦。它不仅要求我们深刻了解所要求解的问题以找到一个可靠性较好的算法,还必须研究各种可能的边界条件,特别是要考虑各种范围的数据大小等。另外,还要熟练掌握所使用的计算机语言。即便如此,所编写出的程序仍有可能会由于这样或那样的原因出错,或得不到满意的结果。因此,对于非计算机专业的科研和教学人员,更渴望有一种能让他们省时省力就能编写出解决专业问题的软件,从而避免资源浪费,提高工作效率。MATLAB就是顺应这一需求产生的,而且从它诞生之日起,就受到用户的欢迎,并且很快在各个领域得到推广。 MATLAB语言是Mathworks公司推出的一套高性能的数值计算可视化软件,它集数值分析、矩阵运算和图形显示于一体,被称为演算纸式的语言,是当今国际上最具活力的软件开发工具包。它提供了强大的科学运算、灵活的程序设计流程、高质量的图形生成及模拟、便捷的与其它程序和语言接口的功能。高质量的图形生成及模拟包括完成2D和3D数据图示、图像处理、动画生成、图形显示等功能的高层MATLAB命令,也包括用户对图形图像等对象进行特性控制的低层MATLAB 命令,以及开发GUI应用程序的各种工具。MATLAB提供了一个人机交互的系统环境,与利用C语言或FORTRAN语言作数值计算的程序设计相比,可以节省大量的 编程时间。通过MATLAB高质量的图形生成及模拟功能对抽象物理现象的细致模拟,使这些过程变得非常直观明了,从而把一些抽象的理论简明化,而且这种方法的实现要比其它的一些仿真软件简单、易行。因为MATLAB既是一种直观、高效的计算机语言,同时又是一个科学计算平台,它为数据分析和数据可视化、算法和应用程序开发提供了最核心的数学和高级图形工具。根据它提供的500多个数学和工程函数,可以在它的集成环境中交互或编程以完成各自的计算及图形生成与模拟。MATLAB中的Simulink是用来对真实世界的系统建模、模拟和分析的部件,提供了基于MATLAB核心的数值、图形、编程功能的一个块状图界面,对模型进行分析和模拟。通过利用MATLAB的编译器、C/C++数学库和图形库,可以自动地将包含数值计算和图形的MATLAB语言的源程序转换为C/C++的源代码。这些代码根据需要既可以当作子模块嵌入大的应用程序中,也可以作为一个独立的程序脱离环境单独运行。这样把一些复杂的物理现象通过MATLAB模拟出来并生成可执行的程序,可以拿来直接MATLAB使用,这是非常方便的。 MATLAB软件包括基本部分和专业扩展部分。基本部分包括:矩阵的运算和各种变换,代数和超越方程的求解。数据处理和傅立叶边变换,数值积分等等。专业扩展部分称为工具箱。它实际上是用MATLAB的基本语句编成的各种子程序集,用于解决某一方面的专门问题,或实现某一类的新算法。易扩展性是MATLAB 最重要的特点,每一个MATLAB用户都可以成为对其有贡献的人。在MATLAB的发展过程中,许多科学家、数学家、工程人员就用它来开发一些新的、有价值的应用程序,所有的程序完全不需要使用低层代码来编写。通过这些工作,已经发展

数字图像处理实验指导书

实验一 Matlab图像处理工具箱的初步练习 一、实验目的和任务 1、初步了解与掌握MA TLAB语言的基本用法; 2、掌握MA TLAB语言中图象数据与信息的读取方法; 3、掌握在MA TLAB语言中图像类型的转换。 二、实验仪器、设备及材料 1、计算机 2、MatLab软件/语言包括图像处理工具箱(Image Processing Toolbox) 3、实验所需要的图片 三、实验原理 将数字图像的RGB表示转换为YUV表示; Y=0.30R+0.59G+0.11B U=0.70R-0.59G-0.11B V=-0.30R-0.59G+0.89B 四、实验步骤 1、阅读资料并熟悉MatLab的基本操作 2、读取MATLAB中的图象数据 3、显示MATLAB中的图象文件。用MATLAB在自建的文件夹中建立m文件,在这个文件的程序中,将MA TLAB目录下work文件夹中的tree.tif 图象文件读出,用到imread,imfinfo等命令,观察一下图象数据,了解一下数字图象在MA TLAB中的处理就是处理一个矩阵的本质。 4、将3中的图象显示出来(用imshow)。 5、对MA TLAB目录下work文件夹中的flowers.tif进行真彩色图像、索引色图像、灰度图像、二值图像之间的相互变换,并显示。 6、进行真彩色图像RGB(lenacolor.jpg)、YIQ图像、HSV图像、YcbCr图像的相互转换,并显示。 五、实验报告要求 1、描述实验的基本步骤; 2、用图片给出步骤4、5、6中取得的实验结果; 六、实验所需图片

lenacolor.jpg 七、实验注意事项 1、学生应提前预习 2、请大家在E盘建一个目录(matlab),在每次启动时都要将这个目录加入到MATLAB的搜索路径中,添加的方法为File----Set Path----Tool---Add Path 八、思考题 1、图像之间转换的基础是什么,为什么可以实现相互的转换 九、附录 MATLAB简介 (1) MATLAB全称是Matrix Laboratory(矩阵实验室),一开始它是一种专门用于矩阵数值计算的软件,从这一点上也可以看出,它在矩阵运算上有自己独特的特点。实际上MATLAB中的绝大多数的运算都是通过矩阵这一形式进行的。这一特点也就决定了MA TLAB在处理数字图像上的独特优势。理论上讲,图像是一种二维的连续函数,然而在计算机上对图像进行数字处理的时候,首先必须对其在空间和亮度上进行数字化,这就是图像的采样和量化的过程。二维图像进行均匀采样,就可以得到一幅离散化成M×N样本的数字图像,该数字图像是一个整数阵列,因而用矩阵来描述该数字图像是最直观最简便的了。而MATLAB的长处就是处理矩阵运算,因此用MA TLAB处理数字图像非常的方便。MATLAB支持五种图像类型,即索引图像、灰度图像、二值图像、RGB图像和多帧图像阵列;支持BMP、GIF、HDF、JPEG、PCX、PNG、TIFF、XWD、CUR、ICO等图像文件格式的读,写和显示。MATLAB对图像的处理功能主要集中在它的图像处理工具箱(Image Processing Toolbox)中。图像处理工具箱是由一系列支持图像处理操作的函数组成,可以进行诸如几何操作、线性滤波和滤波器设计、图像变换、图像分析与图像增强、二值图像操作以及形态学处理等图像处理操作。 1、MATLAB中图象数据的读取 A、imread imread函数用于读入各种图象文件,其一般的用法为 [X,MAP]=imread(‘filename’,‘fmt’) 其中,X,MAP分别为读出的图象数据和颜色表数据,fmt为图象的格式,filename为读取的图象文件(可以加上文件的路径)。 例:[X,MAP]=imread(’flowers.tif’,’tif’);

数字图像处理上机实验三

医学图像处理实验三1、计算图像的梯度,梯度值和梯度角。 I=imread('C:\Users\Administrator\Desktop\cat.jpg'); B=rgb2gray(I); C=double(B); e=1e-6;%10^-6 [dx,dy]=gradient(C);%计算梯度 G=sqrt(dx.*dx+dy.*dy);%梯度幅值 figure,imshow(uint8(G)),title('梯度图像'); pha=atan(dy./(dx+e)) figure,imshow(pha,[]) 图 1

图 2 梯度角图 2、计算图像边缘检测,用滤波器方式实现各种算子。 (1)Roberts算子 clear; I=imread('C:\Users\admin\Desktop\mao.jpg'); B=rgb2gray(I); [m,n]=size(B); nB=B; robertsnum=0;%经roberts算子计算得到的每一个像素的值robertsthreshold=0.6;%设定阈值 for j=1:m-1;%进行边界提取 for k=1:n-1 robertsnum=abs(B(j,k)-B(j+1,k+1))+abs(B(j+1,k)-B(j,k+1)); if(robertsnum>robertsthreshold) nB(j,k)=255; else nB(j,k)=0; end end end subplot(1,2,1);imshow(B);title('原图'); subplot(1,2,2);imshow(nB,[]);title('Robert算子处理后的图像');

傅立叶光学实验报告

实验报告 陈杨 PB05210097 物理二班 实验题目: 傅里叶光学实验 实验目的: 加深对傅里叶光学中的一些基本概念与理论的理解,验证阿贝成像理论,理解透镜成像过程,掌握光学信息处理的实质,进一步了解透镜孔径对分辨率的影响。 实验原理: 1、傅里叶光学变换 二维傅里叶变换为:??+-=?=dxdy vy ux i y x f v u F )](2exp[),()}y ,x (f {),(π ( 1 ) 1()[(,)]x y g x F a f f -=, ''x y x f f y f f λλ??=????????=???? 复杂的二维傅里叶变换可以用透镜来实现,叫光学傅里叶变换。 2、阿贝成像原理 由于物面与透镜的前焦平面不重合,根据傅立叶光 学的理论可以知换(频谱),不过只有一个位相因子 的差别,对于一般情况的滤波处理可以不考虑。这个光路的优道在透镜的后焦平面上得到的不就是物函数的严格的傅立叶变点就是光路简单,就是显微镜物镜成像的情况—可以得到很大的象以便于观察,这正就是阿贝当时要改进显微镜的分辨本领时所用的光路。

3、空间滤波 根据以上讨论:透镜的成像过程可瞧作就是两次傅里叶变换,即从空间函数(,)g x y 变为频谱函数(,)x y a f f ,再变回到空间函数(,)g x y ,如果在频谱面上放一不同结构的光阑,以提取某些频段的信息,则必然使像上发生相应的变化,这样的图像处理称空间滤波。 实验内容: 1、测小透镜的焦距f1 (付里叶透镜f2=45、0CM)、 光路:直角三棱镜→望远镜(倒置)(出射应就是平行光)→小透镜→屏。(思考:如何测焦距?) 夫琅与费衍射: 光路:直角三棱镜→光栅→墙上布屏(此光路满足远场近似) (1)利用夫琅与费衍射测一维光栅常数; 光栅方程:dsin θ=k λ 其中,k=0,±1, ±2, ±3,… 请自己选择待测量的量与求光栅常数的方法。(卷尺可向老师索要) 记录一维光栅的衍射图样、可瞧到哪些级?记录 0级、±1级、±2级光斑的位置; (2)记录二维光栅的衍射图样、 3、观察并记录下述傅立叶频谱面上不同滤波条件的图样或特征; 光路:直角三棱镜→光栅→小透镜→滤波模板(位于空间频谱面上)→墙上屏 思考:空间频谱面在距小透镜多远处?图样应就是何样? (1)一维光栅:(滤波模板自制,一定要注意戴眼镜保护;可用一张纸,一根

光学实验报告

建筑物理 ——光学实验报告 实验一:材料的光反射比、透射比测量实验二:采光系数测量 实验三:室内照明实测 实验小组成员: 指导老师: 日星期二3月12年2013日期: 实验一、材料的光反射比和光透射比测量

一、实验目的与要求 室内表面的反射性能和采光口中窗玻璃的透光性能都会直接或间接的影响室内光环境的好坏,因此,在试验现场采光实测时,有必要对室内各表面材料的光反射比,采光口中透光材料的过透射比进行实测。 通过实验,了解材料的光学性质,对光反射比、透射比有一巨象的数值概念,掌握测量方法和注意事项。 二、实验原理和试验方法 (一)、光反射比的实验原理、测量内容和测量方法 光反射比测量方法分为直接测量方法和间接测量法,直接测量法是指用样板比较和光反射比仪直接得出光反射比;间接法是通过被测表面的照度和亮度得出漫反射面的光反射比。下面是间接测量法。 1.实验原理 (1)用照度计测量: P是投射到某一材料表面反射出来的光通量与被该光源的光通量的比值,根据光反射比的定义:光反射比即: φφP=P/因为测量时将使用同一照度计,其受光面积相等, 且,所以对于定向反射的表面,我们可以用上述代入式,整理后得: P=EE P/对于均匀扩散材料也可以近似的用上述式。 可知只要测出材料表面入射光照度E和材料反射光照度Ep,即可计算出其反射比。 (2)用照度计和亮度计测量 用照度计和亮度计分别测量被测表面的照度E和亮度L后按下式计算 πL/EP= 2;被测表面的亮度,cd/m式中:L---E—被测表面的照度,lx 。 2.测量内容 要求测量室内桌面、墙面、墙裙、黑板、地面的光反射比。每种材料面随机取3个点测量3次,然后取其平均值。 3.测量方法 ①将照度计电源(POWER)开关拨至“ON”,检查电池,如果仪器显示窗出现“BATT”字样,则需要换电池; ②将光接收器盖取下,将其光敏表面放在待测处,再将量程(RANGE)开关拨至适当位置,例如,拨在×1挡,测量的仪器显示值乘以量程因子即为测量结果。另有一种自动量程照度计,数字显示中的小数点随照度的大小不同而自动移位,只需将所显示的数字乘以量程因子即为测量结果(单位:lx)。有的照度计为自动量程,直接读取照度计数字即为测量结果。 ③在稳定光源下,将光接收器背面紧贴被测表面,测其入射照度E;然后将光接收器感光面对准被测表面的同一位置,逐渐平移光接收器平行离开测点,照度值逐渐增大并趋于稳定(约300mm左右),读;ρ,即可计算出光反射比Ep取反射照度值 ④测量时尽量缩短入射照度和反光照度间的时间间隔,并尽可能的保持周围光环境的一致性。

光学信息处理讲义

光学信息处理 1. 引 言 自六十年代激光出现以来,光学的重要发展之一是形成了一个新的光学分支——傅里叶光学。傅里叶光学是指把数学中的傅里叶分析方法用于波动光学,把通讯理论中关于时间、时域、时间调制、频率、频谱等概念相应地改为空间、空域、空间调制、空间频率、空间频谱,并用傅里叶变换的观点来描述和处理波动光学中学波的传播、干涉、衍射等。傅里叶变换已经成为光信息处理的极为重要的工具。 光学信息处理就是对光学图像或光波的振幅分布作进一步的处理。自从阿贝成像理论提出以后,近代光学信息处理通常是在频域中进行。由于光的衍射,图像的夫琅和费衍射分布,即图像的空间频谱分布与图像的空间分布规律不同,这使得在频谱面上对其进行处理可获得一些特殊的图像处理效果。近代光学信息处理具有容量大,速度快,设备简单,可以处理二维图像信息等许多优点,是一门既古老又年青的迅速发展的学科。光学信息存储、遥感、医疗、产品质量检验等方面有着重要的应用。 2. 实验目的 1) 通过实验,加强对傅里叶光学中有关空间频率、空间频谱和空间滤波等概念的理解。 2) 掌握光学滤波技术,观察各种光学滤波器产生的滤波效果,加深对光学信息处理基本思想的认识。 3) 加深对卷积定理的理解 4) 了解用光栅滤波实现图像相加减及光学微分的原理和方法。 5) 了解黑白图像等密度的假彩色编码。 3. 实验原理 1) 二维傅里叶变换和空间频谱 在信息光学中常用傅里叶变换来表达和处理光的成像过程。设在物屏X -Y 平面上光场的复振幅分布为g (x ,y ) ,根据傅里叶变换特性,可以将这样一个空间分布展开成一系列二维基元函数的线性叠加,即 )](2exp[y f x f i y x +π∫∫+∞ ∞ ?+= y x y x y x df df y f x f i f f G y x g )](2exp[),(),(π (1) 式中f x 、f y 为x 、y 方向的空间频率,即单位长度内振幅起伏的次数,G (f x ,f y )表示原函数g (x ,y )中相应于空间频率为f x 、f y 的基元函数的权重,亦即各种空间频率的成分占多大的比例,也称为光场(optical field )g (x ,y )的空间频谱。G (f x 、f y )可由g (x ,y )的傅里叶变换求得 ∫∫+∞ ∞ ?+?= dxdy y f x f i y x g f f G y x y x )](2exp[),(),(π (2) g (x ,y )与G (f x ,f y )是一对傅里叶变换式,G (f x ,f y )称为g (x ,y )的傅里叶的变换,g (x ,y )是G (f x ,f y )的逆变换,它们分别描述了光场的空间分布及光场的频率分布,这两种描述是等

河北工业大学《计算机图像处理》实验指导书

实验一 MATLAB数字图像处理基本操作 一、实验目的与要求 1.熟悉MATLAB软件的开发环境、基本操作以及图像处理工具箱,为编写图像处理程序奠定基础。 2.掌握二值、灰度和彩色图像的读、写和显示方法,以及图像的高、宽、颜色等参数的获取方法。 3.根据实验内容进行问题的简单分析和初步编码。 二、实验相关知识 1、Matlab软件Image Processing Toolbox简介 MatLab的原文是Matrix Laboratory,它包括若干个工具箱,如Communications Toolbox、Control System Toolbox、Neural Network Toolbox、Wavelet Toolbox等等,其中Image Processing Toolbox图像处理工具箱可以完成Geometric Operations、Enhancement、Color Segmentation、Image Transformation、Image Analysis、Morphological Operations等操作。在MatLab中,图像就是一个矩阵,在进行处理时当作一个变量即可,因此运算的书写十分简洁,故MatLab有草稿纸式的算法语言之称。例如:J=I+50; %为原始图像I加上一常数50,并将结果赋予变量J,其效果相当于得到一幅加亮的图像J 以此类推可以书写出减法J=I-0.5;乘法J=I*2;除法J=I/3;等等。 利用MatLab提供的imread和imwrite函数可以完成对图像文件的读写操作,它们所支持的一些常用的图像文件格式见表1-1。 MatLab Command窗口的提示符号“>>”下直接键入命令即可运行,如键入: >>clear %执行本命令将会清除内存中的全部变量 >> figure(1); %生成一个图像窗口1 >> I=imread('e:lena.bmp'); %将硬盘e:根目录上的图像文件lena.bmp的数据读入矩阵变量I中>> imshow(I); %在当前的图像窗口中显示图像矩阵I >> title('原始图像'); %在当前的图像窗口中加上标题 但为了能够对程序进行调试和重复应用,我们要求用M文件的方式完成实验中各个程序的编写。 2、数字图像的表示和类别 根据图像数据矩阵解释方法的不同,MATLAB把其处理为四类: (1) 亮度图像(Intensity images) 一幅亮度图像是一个数据矩阵,其归一化的取值表示亮度。若亮度图像的像素都是uint8类或uint16类,则它们的整数值范围分别是[0,255]和[0,65536]。若图像是double类,则像素取值就是浮点数。规定双精度型归一化亮度图像的取值范围是[0,1]。 (2) 二值图像(Binary images) 一幅二值图像是一个取值只有0和1的逻辑数组。而一幅取值只包含0和1的uint8类数组,在MATLAB 中并不认为是二值图像。使用logical函数可以把数值数组转化为逻辑数组,其语法为B=logical(A);其中A是由0和1构成的数值数组。要测试一个数组是否为逻辑数组,可以使用函数islogical(C);若C是逻辑数组,则该函数返回1;否则,返回0。 (3) 索引图像(Indexed images) 索引颜色通常也称为映射颜色,在这种模式下,颜色都是预先定义的,并且可供选用的一组颜色也很有限,索引颜色的图像最多只能显示256种颜色。一幅索引颜色图像在图像文件里定义,当打开该文件时,

立式光学仪实验报告doc

立式光学仪实验报告 篇一:光学实验报告 建筑物理 ——光学实验报告实验一:材料的光反射比、透射比测量实验二:采光系数测量 实验三:室内照明实测实验小组成员:指导老师:日期:XX年12月3日星期二实验一、材料的光反射比和光透射比测量 一、实验目的与要求室内表面的反射性能和采光口中窗玻璃的透光性能都会直接或间接的影响室内光环境的好坏,因此,在试验现场采光实测时,有必要对室内各表面材料的光反射比,采光口中透光 材料的过透射比进行实测。通过实验,了解材料的光学性质,对光反射比、透射比有一巨象的数值概念,掌握测量方法和注意事项。 二、实验原理和试验方法 (一)、光反射比的实验原理、测量内容和测量方法光反射比测量方法分为直接测量方法和间接测量法,直接测量法是指用样板比较和光反 射比仪直接得出光反射比;间接法是通过被测表面的照度和亮度得出漫反射面的光反射比。 下面是间接测量法。

1. 实验原理 (1)用照度计测量:根据光反射比的定义:光反射比p是投射到某一材料表面反射出来的光通量与被该光源的光通量的比值,即: p=φp/φ 因为测量时将使用同一照度计,其受光面积相等,且,所以对于定向反射的表面,我们 可以用上述代入式,整理后得:p=ep/e 对于均匀扩散材料也可以近似的用上述式。可知只要测出材料表面入射光照度e和材料反射光照度ep,即可计算出其反射比。(2) 用照度计和亮度计测量 用照度计和亮度计分别测量被测表面的照度e和亮度l 后按下式计算 p=πl/e 式中:l---被测表面的亮度,cd/m2; e—被测表面的照度,lx 。 2.测量内容要求测量室内桌面、墙面、墙裙、黑板、地面的光反射比。每种材料面随机取3个点测量3次,然后取其平均值。 3.测量方法 ①将照度计电源(power)开关拨至“on”,检查电池,如果仪器显示窗出现“batt”字 样,则需要换电池;

信息光学matlab仿真

%圆孔的夫琅禾费衍射: N=512; r=3; %衍射圆孔的半径 I=zeros(N,N); [m,n]=meshgrid(linspace(-N/16,N/16-1,N)); D=(m.^2+n.^2).^(1/2); I(find(D<=r))=1; subplot(1,2,1),imshow(I); title('生成的衍射圆孔'); % 夫琅禾费衍射的实现过程 L=500; [X,Y]=meshgrid(linspace(-L/2,L/2,N)); lamda_1=630; % 输入衍射波长; lamda=lamda_1/1e6 k=2*pi/lamda; z=1000000; % 衍射屏距离衍射孔的距离h=exp(1j*k*z)*exp((1j*k*(X.^2+Y.^2))/(2*z))/(1j*lamda*z);%脉冲相应 H =fftshift(fft2(h)); %传递函数 B=fftshift(fft2(I)); %孔径频谱 G=fftshift(ifft2(H.*B)); subplot(1,2,2),imshow(log(1+abs(G)),[]); title('衍射后的图样'); figure meshz(X,Y,abs(G)); title('夫琅禾费衍射强度分布')

%单缝的夫琅禾费衍射: N=512; a=25; % 单缝的宽度 b=1000;% 单缝的长度 I=zeros(N,N); [m,n]=meshgrid(linspace(-N/4,N/4,N)); I(-a

光学图像信息处理

课题光学图像信息处理 1.了解光学图像信息处理的基本理论和技术 教学目的 2.掌握光的衍射、光学傅里叶变换、频谱分析及频谱滤波的原 理和技术。 重难点 1.光具组各元件的共轴调节; 2.傅里叶变换原理的理解。 教学方法讲授、讨论、实验演示相结合。 学时 3个学时 一、前言 光学信息处理技术是近20年多来发展起来的新的研究领域,在现代光学中占有重要的位置。光学信息处理可完成对二维图像的识别、增强、恢复、传输、变换、频谱分析等。从物理光学的角度,光学信息处理是基于傅里叶变换和光学频谱分析的综合技术,通过在空域对图像的调制或在频域对傅里叶频谱的调制,借助空间滤波的技术对光学信息进行处理。 二、实验仪器 黑白胶片、白光光源、聚光镜、小孔滤波器、准直镜、黑白编码片框架、傅氏变换透镜、频谱滤波器、场镜、CCD彩色摄像机、彩色监视器、白屏等。 三、实验原理 光学信息处理的理论基础是阿贝(Abbe)二次衍射成像理论和著名的阿贝-波特(Abbe-Porter)实验。阿贝成像理论认为,物体通过透镜成像过程是物体发出的光波经物镜,在其后焦面上产生夫琅和费衍射的光场分布,即得到第一次衍射的像(物的傅里叶频谱);然后该衍射像作为新的波源,由它发出次波在像面上干涉而构成物体的像,称为第二次衍射成像,如图1所示。

进一步解释,物函数可以看作由许多不同空间频率的单频(基元)信息组成,夫琅和费衍射将不同空间频率信息按不同方向的衍射平面波输出,通过透镜后的不同方向的衍射平面波分别汇聚到焦平面上不同的位置,即形成物函数的傅里叶变换的频谱,频谱面上的光场分布与物函数(物的结构)密切相关。不难证明,夫琅和费衍射过程就是傅里叶变换过程,而光学成像透镜即能完成傅立叶变换运算,称傅里叶变换透镜。 阿贝成像理论由阿贝-波特实验得到证明:物面采用正交光栅(网格状物),用平行单色光照明,在频谱面放置不同滤波器改变物的频谱结构,则在像面上可得到物的不同的像。实验结果表明,像直接依赖频谱,只要改变频谱的组份,便能改变像。这一实验过程即为光学信息处理的过程,如图2所示。 如果对物或频谱不进行任何调制(改变),物和像是一致的,若对物函数或频谱函数进行调制处理,由图2所示的在频谱面采用不同的频谱滤波器,即改变了频谱则会使输出的像发生改变而得到不同的输出像,实现光学信息处理的目的。

数字图像处理实验指导书

实验一数字图像处理编程基础 一、实验目的 1. 了解MATLAB图像处理工具箱; 2. 掌握MATLAB的基本应用方法; 3. 掌握MATLAB图像存储/图像数据类型/图像类型; 4. 掌握图像文件的读/写/信息查询; 5. 掌握图像显示--显示多幅图像、4种图像类型的显示方法; 6. 编程实现图像类型间的转换。 二、实验原理 略。 三、实验内容 1. 实现对图像文件的读/写/信息查询,图像显示--显示多幅图像、4种图像类型的显示方法、图像类型间的转换。 2. 运行图像处理程序,并保存处理结果图像。 四、分析思考 归纳总结Matlab各个基本指令。 Dither 采用“抖动”方法从RGB 图像创建索引图像 grayslice 从灰度图像通过阈值处理创建索引图像 gray2ind 从灰度图像创建索引图像 ind2gray 从索引图像创建灰度图像 rgb2ind 从RGB 图像创建索引图像 ind2rgb 从索引图像创建RGB 图像 rgb2gray 从RGB 图像创建灰度图像

实验二 图像几何变换实验 一、实验目的 1.学习几种常见的图像几何变换,并通过实验体会几何变换的效果; 2.掌握图像平移、剪切、缩放、旋转、镜像等几何变换的算法原理及编程实现; 3.掌握matlab 编程环境中基本的图像处理函数。 二、实验原理 1. 初始坐标为(,)x y 的点经过平移00(,)x y ,坐标变为(',')x y ,两点之间的关系为:00 ''x x x y y y =+??=+?,以矩阵形式表示为: 00'10'01100 11x x x y y y ????????????=?????????????????? 2. 图像的镜像变换是以图象垂直中轴线或水平中轴线交换图像的变换,分为垂直镜像变换和水平镜像变换,两者的矩阵形式分别为: '100'01010011x x y y -????????????=?????????????????? '100'01010011x x y y ????????????=-?????????????????? 3. 图像缩小和放大变换矩阵相同: '00'0010011X y x S x y S y ????????????=?????????????????? 当1x S ≤,1y S ≤时,图像缩小;当1x S ≥,1y S ≥时,图像放大。 4. 图像旋转定义为以图像中某一点为原点以逆时针或顺时针方

高等光学实验报告

实验一用两次成像法测薄透镜焦距 一、引言 透镜是光学仪器中最基本的元件,反映透镜特性的一个主要参量是焦距,它决定了透镜成像的位置和性质(大小、虚实、倒立)。对于薄透镜焦距测量的准确度,主要取决于透镜光心及焦点(像点)定位的准确度。本实验在光具座上采用贝塞耳法(两次成像法)测薄凸透镜焦距,以便了解透镜成像的规律,掌握光路调节技术,为今后正确使用光学仪器打下良好的基础。 二、实验目的 1.学会用贝塞耳法(两次成像法)测量透镜焦距的方法。 2.掌握简单光路的分析和光学元件同轴等高的调节方法。 3.熟悉光学实验的操作规则。 三、实验仪器 He-Ne激光器,白光源,双凸透镜,反射镜,目标物,白屏,分划板 四、实验原理 在近轴光线的条件下,薄透镜成像的高斯公式为: ' ' 1 f f s s +=(4-1) 当将薄透镜置于空气中时,则焦距: ' ' ' s s f f s s =-= - (4-2) (4-2)式中, f ′为像方焦距; f为物方焦距;s′为像距;s为物距。 式中的各线距均从透镜中心(光心)量起,与光线进行方向一致为正,反之为负, 如图4-1所示。若在实验中分别测出物距s和像距s′,即可用式(4-2)求出该透镜的焦距f′。但应注意:测得量须添加符号,求得量则根据求得结果中的符号判断其物理意义。对于凸透镜焦距的测量,除用当将薄透镜上述物像公式法测量之外,还可用以下几种方法。 1.粗略估测法 图4-1 薄透镜成像

以太阳光或较远的灯光为光源,用凸透镜将其发出的光线聚成一光点(或像),此时,s →∞,s ′≈f ′,即该点(或像)可认为是焦点,而光点到透镜中心(光心)的距离,即为凸透镜的焦距,此 法测量的误差约在10%左右。由于 这种方法误差较大,大都用在实验 前作粗略估计,如挑选透镜等。 2.自准法 如图4-2所示,在待测透镜L 的一侧放置被光源照明的1字形物屏AB ,在另一侧放一平面反射镜M , 移动透镜(或物屏),当物屏AB 正好位于凸透镜之前的焦平面时,物屏AB 上任一点发出的光线经透镜折射后,将变为平行光线,然后被平面反射镜反射回来。再经透镜折射后,仍会聚在它的焦平面上,即原物屏平面上,形成一个与原物大小相等方向相反的倒立实像A ′B ′。此时物屏到透镜之间的距离,就是待测透镜的焦距,即 f =s (4-3) 由于这个方法是利用调节实验装置本身使之产生平行光以达到聚焦的目的,所以称之为自准法,该法测量误差在1%~5%之间。 3.位移法(又称为贝塞尔物像交换法) 物像公式法、粗略估 测法自准法都因透镜的中 心位置不易确定而在测量 中引进误差,为避免这一 缺点,可取物屏和像屏之 间的距离D 大于4倍焦距 (4f),且保持不变,沿光 轴方向移动透镜,则必能 在像屏上观察到二次成像。 如图4-3所示,设物距为s 1时,得放大的倒立实像; 物距为s 2时,得缩小的倒立实像,透镜两次成像之间的位移为d,根据透镜成像 公式(4-2),将 ()12/2S S D d ¢=-=-- () 12/2S S D d ¢=-=+ 代入式(4-2)即得 22 ' 4D d F D -= (4-4) 可见,只要在光具座上确定物屏、像屏以及透镜二次成像时其滑座边缘所在位置,就可较准确的求出焦距f ′。这种方法毋须考虑透镜本身的厚度,测量误差可达到1% 。 五、 实验内容 图4-2 凸透镜自准法成像 图5-3 二次成像

MATLAB编程用两种方法模拟光学实验

MATLAB编程用两种方法模拟光学实验 摘要: 利用MATLAB软件编程实现了用衍射积分的方法对单缝衍射、杨氏双缝干涉、黑白 光栅衍射的计算机模拟;以及用傅立叶变换方法对简单孔径衍射、黑白光栅及正弦光栅夫 琅和费衍射的模拟。 关键词: MATLAB;衍射积分;傅立叶变换;计算机模拟 引言: 美国Mathworks公司推出的MA TLAB,是一种集数值计算、符号预算、可视化建模、 仿真和图形处理等多种功能于一体的优秀图形化软件。本文介绍了通过MA TLAB软件编 程实现用衍射积分和傅立叶变换实现夫琅和费衍射计算机模拟的方法。 计算机模拟为衍射实验的验证提供一条简捷、直观的途径。从而加深了对物理原理、 概念和图像的理解。 正文: 大学教学课程中引入计算机模拟技术正日益受到重视,与Basic、C和Fortran相比,用MA TLAB软件做光学试验的模拟,只需要用数学方式表达和描述,省去了大量繁琐的编 程过程。下面来介绍利用MATLAB进行光学模拟的两种方法。 (一)衍射积分方法: 该方法首先是由衍射积分算出接收屏上的光强分布,然后根据该分布调制色彩作图,从而得到衍射图案。 1.单缝衍射。 把单缝看作是np个分立的相干光源,屏幕上任意一点复振幅为np个光源照射结果 的合成,对每个光源,光程差Δ=ypsinΦ,sinΦ=ys/D,光强I=I0(Σcosα)2+(Σsinα)2,其中α=2Δ/λ=πypys/λD 编写程序如下,得到图1 lam=500e-9; a=1e-3;D=1; ym=3*lam*D/a; ny=51; ys=linspace(-ym,ym,ny); np=51; yp=linspace(0,a,np); for i=1:ny sinphi=ys(i)/D; alpha=2*pi*yp*sinphi/lam; 图1 单缝衍射的光强分布 sumcos=sum(cos(alpha)); sumsin=sum(sin(alpha)); B(i,:)=(sumcos^2+sumsin^2)/np^2; end N=255; Br=(B/max(B))*N; subplot(1,2,1)

相关文档
最新文档