QTZ63塔吊天然基础计算书

QTZ63塔吊天然基础计算书
QTZ63塔吊天然基础计算书

QTZ63塔吊天然基础计算书

新建厂房.办公楼工程;属于框架结构;地上7层;建筑高度:22.80m;标准层层高:3.20m ;总建筑面积:7289.65.平方米;总工期:300天;施工单位建设工程有限公司。

本工程由无锡房地产开发有限公司投资,无锡市研究院设计,无锡市地质勘察,工程监理公司监理,建设工程有限公司组织施工;由担任项目经理,担任技术负责人。

一、参数信息

塔吊型号:QTZ63,塔吊起升高度H=110.00m,

塔吊倾覆力矩M=630fkN.m,混凝土强度等级:C35,

塔身宽度B=1.6fm,基础以上土的厚度D:=2.00m,

自重F1=450.8fkN,基础承台厚度h=1.45m,

最大起重荷载F2=60fkN,基础承台宽度Bc=5.75m,

钢筋级别:II级钢。

二、基础最小尺寸计算

1.最小厚度计算

依据《混凝土结构设计规范》(GB50010-2002)第7.7条受冲切承载力计算。

根据塔吊基础对基础的最大压力和最大拔力,按照下式进行抗冲切计算:

(7.7.1-2)

其中: F──塔吊基础对基脚的最大压力和最大拔力;其它参数参照规范。

η──应按下列两个公式计算,并取其中较小值,取1.00;

(7.7.1-2)

(7.7.1-3)

η1--局部荷载或集中反力作用面积形状的影响系数;

η2--临界截面周长与板截面有效高度之比的影响系数;

βh--截面高度影响系数:当h≤800mm时,取βh=1.0;当h≥2000mm 时,取βh=0.9,

其间按线性内插法取用;

ft--混凝土轴心抗拉强度设计值,取16.70MPa;

σpc,m--临界截面周长上两个方向混凝土有效预压应力按长度的加权平均值,其值

宜控制在1.0-3.5N/mm2范围内,取2500.00;

u

m --临界截面的周长:距离局部荷载或集中反力作用面积周边h

o

/2

处板垂直截面的

最不利周长;这里取(塔身宽度+h

o

)×4=9.60m;

h

o

--截面有效高度,取两个配筋方向的截面有效高度的平均值;

βs--局部荷载或集中反力作用面积为矩形时的长边与短边尺寸的比值,βs不宜

大于4;当βs<2时,取βs=2;当面积为圆形时,取βs=2;这里取βs=2;

αs--板柱结构中柱类型的影响系数:对中性,取αs=40;对边柱,取αs=30;对角柱,

取αs=20. 塔吊计算都按照中性柱取值,取αs=40 。

计算方案:当F取塔吊基础对基脚的最大压力,将h

o1

从0.8m开始,每增加0.01m,

至到满足上式,解出一个h

o1

;当F取塔吊基础对基脚的最大拔力时,同理,

解出一个h

o

2,最

后h

o1与h

o2

相加,得到最小厚度h

c

。经过计算得到:

塔吊基础对基脚的最大压力F=200.00kN时,得h

o1

=0.80m;

塔吊基础对基脚的最大拔力F=200.00kN时,得h

o2

=0.80m;

解得最小厚度 H

o =h

o1

+h

o2

+0.05=1.65m;

实际计算取厚度为:H

o

=1.45m。

2.最小宽度计算

建议保证基础的偏心矩小于Bc/4,则用下面的公式计算:

其中 F──塔吊作用于基础的竖向力,它包括塔吊自重,压重和最大起重荷载,

F=1.2×(450.80+60.00)=612.96kN;

G ──基础自重与基础上面的土的自重,

G=1.2×(25×Bc×Bc×Hc+γm ×Bc×Bc×D)

=1.2×(25.0×Bc×Bc×1.45+20.00×Bc×Bc×2.00);

γm──土的加权平均重度,

M ──倾覆力矩,包括风荷载产生的力矩和最大起重力矩,M=1.4×630.00=882.00kN.m。

解得最小宽度 Bc=-1.00m,

实际计算取宽度为 Bc=5.75m。

三、塔吊基础承载力计算

依据《建筑地基基础设计规范》(GB50007-2002)第5.2条承载力计算。

计算简图:

当不考虑附着时的基础设计值计算公式:

当考虑附着时的基础设计值计算公式:

当考虑偏心矩较大时的基础设计值计算公式:

式中 F──塔吊作用于基础的竖向力,它包括塔吊自重,压重和最大起重荷载,F=304.30kN;

G──基础自重与基础上面的土的自重:

G=1.2×(25.0×Bc×Bc×Hc+γm ×Bc×Bc×D) =3025.22kN;

γm──土的加权平均重度

Bc──基础底面的宽度,取Bc=5.750m;

W──基础底面的抵抗矩,W=Bc×Bc×Bc/6=31.685m3;

M──倾覆力矩,包括风荷载产生的力矩和最大起重力矩,M=1.4×630.00=882.00kN.m;

a──合力作用点至基础底面最大压力边缘距离(m),按下式计算:

a= Bc / 2 - M / (F +

G)=5.750/2-882.000/(612.960+3025.219)=2.633m。

经过计算得到:

无附着的最大压力设计值

=(612.960+3025.219)/5.7502+882.000/31.685=137.876kPa;

P

max

无附着的最小压力设计值

=(612.960+3025.219)/5.7502-882.000/31.685=82.203kPa;

P

min

有附着的压力设计值 P=(612.960+3025.219)/5.7502=110.039kPa;

=2×(612.960+3025.219)/(3×5.750×偏心矩较大时压力设计值 P

kmax

2.633)=160.230kPa。

四、地基基础承载力验算

地基基础承载力特征值计算依据《建筑地基基础设计规范》GB 50007-2002第5.2.3条。

计算公式如下:

fa--修正后的地基承载力特征值(kN/m2);

--地基承载力特征值,按本规范第5.2.3条的原则确定;取

f

ak

145.000kN/m2;

ηb、ηd--基础宽度和埋深的地基承载力修正系数;

γ--基础底面以上土的重度,地下水位以下取浮重度,取20.000kN/m3;

b--基础底面宽度(m),当基宽小于3m按3m取值,大于6m按6m取值,取5.750m;

γm--基础底面以上土的加权平均重度,地下水位以下取浮重度,取20.000kN/m3;

d--基础埋置深度(m) 取2.000m;

解得地基承载力设计值:fa=195.250kPa;

实际计算取的地基承载力设计值为:fa=170.000kPa;

地基承载力特征值fa大于最大压力设计值Pmax=137.876kPa,满足要求!

地基承载力特征值1.2×fa大于偏心矩较大时的压力设计值

Pkmax=160.230kPa,满足要求!

五、基础受冲切承载力验算

依据《建筑地基基础设计规范》GB 50007-2002第8.2.7条。

验算公式如下:

式中

βhp --- 受冲切承载力截面高度影响系数,当h不大于800mm时,βhp取1.0.当h大于等于2000mm时,βhp取0.9,其间按线性内插法取用;

--- 混凝土轴心抗拉强度设计值;

f

t

--- 基础冲切破坏锥体的有效高度;

h

o

--- 冲切破坏锥体最不利一侧计算长度;

a

m

--- 冲切破坏锥体最不利一侧斜截面的上边长,当计算柱与基础交

a

t

接处的受冲切承载力时,

取柱宽(即塔身宽度);当计算基础变阶处的受冲切承载力时,取上阶宽;

a

b

--- 冲切破坏锥体最不利一侧斜截面在基础底面积范围内的下边长,当冲切破坏锥体的底面

落在基础底面以内,计算柱与基础交接处的受冲切承载力时,取柱宽加两倍基础有效

高度;当计算基础变阶处的受冲切承载力时,取上阶宽加两倍该处的基础有效高度。

p

j

--- 扣除基础自重及其上土重后相应于荷载效应基本组合时的地基土单位面积净反力,对偏

心受压基础可取基础边缘处最大地基土单位面积净反力;

A

l

--- 冲切验算时取用的部分基底面积

F

l --- 相应于荷载效应基本组合时作用在A

l

上的地基土净反力设计

值。

则,βhp --- 受冲切承载力截面高度影响系数,取βhp=0.95;

f

t --- 混凝土轴心抗拉强度设计值,取 f

t

=1.57MPa;

a

m

--- 冲切破坏锥体最不利一侧计算长度:

am=[1.60+(1.60 +2×1.45)]/2=3.05m;

h

o --- 承台的有效高度,取 h

o

=1.40m;

P

j --- 最大压力设计值,取 P

j

=160.23KPa;

F

l

--- 实际冲切承载力:

F

l

=160.23×(5.75+4.50)×

((5.75-4.50)/2)/2=513.24kN。

其中5.75为基础宽度,4.50=塔身宽度+2h;

允许冲切力:0.7×0.95×1.57×3050.00×

1400.00=4438540.46N=4438.54kN;

实际冲切力不大于允许冲切力设计值,所以能满足要求!

六、承台配筋计算

1.抗弯计算

依据《建筑地基基础设计规范》GB 50007-2002第8.2.7条。计算公式如下:

式中:M

I

--- 任意截面I-I处相应于荷载效应基本组合时的弯矩设计值;

a

1

--- 任意截面I-I至基底边缘最大反力处的距离;当墙体材料为混凝土时,

取a

1=b即取a

1

=2.08m;

P

max

--- 相应于荷载效应基本组合时的基础底面边缘最大地基反力设计值,取160.23kN/m2;

P --- 相应于荷载效应基本组合时在任意截面I-I处基础底面地基反力设计值;

P=160.23×(3×1.60-2.08)/(3×1.60)=90.96kPa;

G---考虑荷载分项系数的基础自重及其上的土自重,取

3025.22kN/m2;

l --- 基础宽度,取l=5.75m;

a --- 塔身宽度,取a=1.60m;

a' --- 截面I - I在基底的投影长度, 取a'=1.60m。

经过计算得M

I

=2.082×[(2×5.75+1.60)×(160.23+90.96-2×

3025.22/5.752)

+(160.23-90.96)×5.75]/12=463.44kN.m。

2.配筋面积计算

依据《建筑地基基础设计规范》GB 50007-2002第8.7.2条。公式如下:

式中,αl --- 当混凝土强度不超过C50时,α1取为1.0,当混凝土强度等级为C80时,

取为0.94,期间按线性内插法确定,取αl=1.00;

fc --- 混凝土抗压强度设计值,查表得fc=16.70kN/m2;

h

o --- 承台的计算高度,h

o

=1.40m。

经过计算得:

αs=463.44×106/(1.00×16.70×5.75×103×(1.40×103)2)=0.002;

ξ=1-(1-2×0.002)0.5=0.002;

γs=1-0.002/2=0.999;

A

s

=463.44×106/(0.999×1.40×300.00)=1104.79mm2。

由于最小配筋率为0.15%,所以最小配筋面积为:5750.00×1450.00×0.15%=12506.25mm2。

故取 A

s

=12506.25mm2。

塔吊附着计算书

塔吊附着计算书 1、附着装置布置方案 根据塔机生产厂家提供的标准,附着距离一般为3~5 m,附着点跨距为7~8 m[1,2],塔机附着装置由附着框架和附着杆组成,附着框架多用钢板组焊成箱型结构,附着杆常采用角钢或无缝钢管组焊成格构式桁架结构,受力不大的附着杆也可用型钢或钢管制成。 根据施工现场提供的楼面顶板标高,按照QTZ63 系列5013 型塔式起重机的技术要求,需设4道附着装置,以满足工程建设最大高度100 m 的要求。附着装置布置方案如图2 所示。 图1塔吊简图与计算简图 塔吊基本参数

图2塔吊附着简图

三、第一道附着计算 塔机按照说明书与建筑物附着时,最上面一道附着装置的负荷最大,因此以此道附着杆的负荷作为设计或校核附着杆截面的依据。第一道附着的装置的负荷以第四道附着杆的负荷作为设计或校核附着杆截面计算,第一道附着高度计划在第8层楼层标高为23.45米。 (一)、支座力计算 附着式塔机的塔身可以简化为一个带悬臂的刚性支撑连续梁,其内力及支座反力计算如下: 风荷载取值:Q = 0.41kN; 塔吊的最大倾覆力矩:M = 1668.00kN;

弯矩图 变形图

剪力图 计算结果: N w = 105.3733kN ;(二)、附着杆内力计算 计算简图: 计算单元的平衡方程: 其中:

2.1 第一种工况的计算: 塔机满载工作,风向垂直于起重臂,考虑塔身在最上层截面的回转惯性力产生的扭矩合风荷载扭矩。 将上面的方程组求解,其中θ从 0 - 360 循环, 分别取正负两种情况,求得各附着最大的。 塔机满载工作,风向垂直于起重臂,考虑塔身在最上层截面的回转惯性力产生的扭矩合。 杆1的最大轴向压力为: 344.02 kN; 杆2的最大轴向压力为: 0.00 kN; 杆3的最大轴向压力为: 58.44 kN; 杆1的最大轴向拉力为: 0.00 kN; 杆2的最大轴向拉力为: 275.21 kN; 杆3的最大轴向拉力为: 164.95 kN; 2.2 第二种工况的计算: 塔机非工作状态,风向顺着着起重臂, 不考虑扭矩的影响。 将上面的方程组求解,其中θ= 45, 135, 225, 315,M w = 0,分别求得各附着最大的轴压和轴拉力。 杆1的最大轴向压力为: 105.37 kN; 杆2的最大轴向压力为: 21.22 kN; 杆3的最大轴向压力为: 111.69 kN; 杆1的最大轴向拉力为: 105.37 kN; 杆2的最大轴向拉力为: 21.22 kN; 杆3的最大轴向拉力为: 111.69 kN; (三)、附着杆强度验算 1.杆件轴心受拉强度验算验算公式: σ= N / A n≤f 其中σ --- 为杆件的受拉应力; N --- 为杆件的最大轴向拉力,取 N =275.21 kN; A n--- 为杆件的截面面积,本工程选取的是 18a号槽钢;

塔吊基础知识设计计算

塔式起重机方形独立基础的设计计算 余世章余婷媛 《内容提要》文章通过对天然基础的塔吊基础设计,详细论述整个基础的设计过程,经济适用,安全可靠、结构合理,思路清晰,论述精辟有据;在现场施工中,有着十分重要的指导意义。 关键词:塔机、偏心距、工况、一元三次方程、核心区、基底压力。 一、序言 随着建筑业迅猛发展,塔式起重机(简称塔机)在建筑市场中是必不可少的一项重要垂直运输机械设备;塔机基础设计,在建筑行业中是属于重大危险源的范畴,正因为如此,塔机基础设计得到各使用单位的高度重视;本人通过网络查阅过许多塔机基础设计方案,除采用桩基外,塔基按独立基础所设计的方形基础,绝大部分都按厂家说明书所提供的基础尺寸进行配筋,按规范设计计算的为数不多,厂家所提供基础大小数据有些是不满足规范要求,而塔机基础配筋绝大多数情况是配筋过大,浪费较为严重;厂家说明书所提供数据表明,地基承载力特征值小的基础外形尺寸就较大,承载力特征值较大,基础尺寸就相应的小点,似乎看起来这种做法是正确的,其实并非如此。 塔机基础型式方形等截面最为普遍,下面通过一些规范限定的条件,对方形截面独立基础规范化的设计,很有参考和实用价值。下面举例采用中联重科的塔吊类型进行论述和阐明。 二、塔吊基础设计步骤 2.1、确定塔吊型号

首先根据施工总平面图,根据建筑物外形尺寸(长、宽、高)、及材料堆放场地和钢筋加工场地,根据塔机覆盖率情况,按塔机说明书中的主要参数确定塔机型号。 2.2、根据塔机型号确定荷载 厂家说明书中都有荷载说明,按塔吊自由独立高度条件提供两组数据(中联重科),一组为工作状态(工况)荷载,另一组为非工作状态(非工况)荷载,确定出一组最不利的工况荷载。 2.3、确定塔吊基础厚度h 根据说明书中塔机安装说明,基础固定塔基及有两种形式,一种是地脚螺栓,另一种是埋入固定支腿式;因此根据塔机地脚螺栓锚固长度和支腿的埋深,可以确定塔机基础厚度h。 2.4、基础外形尺寸的确定 根据荷载大小和基础厚度h,确定独立方形基础的边长尺寸。 2.5、基础配筋计算 求出内力进行基础配筋计算,并根据《规范》的构造要求进行配筋和验算。 2.6、基础冲切、螺杆(支腿)受拉或局部受压的验算 三、方形独立基础尺寸的确定 3.1方形基础宽度B的上限值 根据上面塔机基础计算步骤可以看出,塔机基础尺寸的确定是方形基础的计算关键。利用偏心距限定条件,可求出基础最小截面尺寸。根据偏心距e(荷载按标准组合):

塔吊基础计算书模板

假设塔吊型号:6010/23B,最大4绳起重荷载10t; 塔吊无附墙起重最大高度H=59.8m,塔身宽度B=2.0m; 承台基础混凝土强度:C35, 厚度Hc=1.35m,承台长度Lc或宽度Bc=6.25m; 承台钢筋级别:Ⅱ级,箍筋间距S=200mm,保护层厚度:50mm; 承台桩假设选用4根φ400×95(PHC-A)预应力管桩,已知每1根桩的承载力特征值为1700KN; 参考塔吊说明书可知: 塔吊处于工作状态(ES)时: 最大弯矩Mmax=2344.81KN·m 最大压力Pmax=749.9KN 塔吊处于非工作状态(HS)时: 最大弯矩Mmax=4646.86KN·m 最大压力Pmax=694.9KN 2、对塔吊基础抗倾覆弯矩的验算 取塔吊最大倾覆力矩,在工作状态(HS)时:Mmax=4646.86KN·m,计算简图如下:

2.1 x、y向,受力简图如下:

以塔吊中心O点为基点计算: M1=M=4646.86KN·m M2=2.125·R B M 2=M1 ·R B=4646.86 B=2097.9KN <2×1800=3600KN(满足要求) 2.2 z向,受力简图如下: 以塔吊中心O点为基点计算: M1=M=4646.86KN·m M2=3·R B

M R B=4646.86 <1800KN(满足要求) 3、承台桩基础设计 3.1 塔吊基础承台顶面的竖向力与弯矩计算 计算简图如下: 上图中X轴的方向是随机变化的,设计计算时应按照倾覆力矩M最不利方向进行验算。 3.1.1 桩顶竖向力的计算(依据《建筑桩技术规范》JGJ94-94的第5.1.1条) 其中 n——单桩个数,n=4; F——作用于桩基承台顶面的竖向力设计值,等同于前面塔吊说明书中的P;

QTZ63塔吊附着施工方案及计算书.

塔吊附着施工方案 一、工程概况 本工程是遵义华南房地产开发有限公司开发,在遵义县南白五里堡,总建筑面为90000M2,分A1、A2、B1、B2栋,A1、A2、B1、B2地下室一层,总高度98M建筑占地面积4000 M2,正负零标高相当于绝对标高908.40M,采用框剪结构。其中A1、A2共用一台塔吊,B1、B2共用一台塔吊。 二、塔吊介绍 本塔吊为“华夏”牌QTZ40,最大独立高度为28.3米,最大附着高度为120米,在工作高度达70米前,可采用二倍率或四倍率钢丝绳;当工作高度超过70米时,只能采用二倍率钢丝绳。 三、附着架的安装 1、附着式的结构布置与独立式相同,此时为提高塔机稳定性和刚度,在塔身全高内设置至少7道附着装置。为此要求塔机中心线距建筑的距离为2.9米,附着装置之间的距离尺寸用户可根据施工情况自行调整,安装方法见图1-1。在图1-1中,H1小于或等于21.3米, H2=H3=H4=H5=H6小于或等于17.6米,H7小于或等于15米。

①、附着点的强度应满足塔机对建筑物的荷载,必要时应加配筋或提高砼标号。 ②、附着筐尽量设置在塔身标准节接头处,附着架应箍紧塔身,附着杆的倾斜度应控制在10°以内。 ③、杆件对接部位要开30°坡口,其焊缝厚度应大于10mm,支座处的焊缝厚度应大于12mm。 ④、附着杆件与墙面的夹角应控制在45-60°之间。 ⑤、锚固点以上的自由高度应控制在说明书规定高度之内。 ⑥、附着后要有经纬仪进行检测,并通过调整附着撑杆的长度及顶块来保证塔身垂直度(塔身轴线和支承面的垂直度误差不大于4/1000,最高锚固点以下的塔身垂直度不大于2/1000),并作好记录。 四、附着架的拆除 1、用钢管、跳板在附着筐下搭设操作平台,搭设时应将平台支撑好。 2、依据建筑物搭设走道或设置其它辅助起吊装置。 3、用走道拆除时可直接将附墙支撑转移到建筑物内,再转移至地面。 4、采用其它辅助起吊装置拆卸时,应先用吊绳固定好靠建筑物端的撑杆,然后退掉靠建筑物端的撑杆销;再用绳将塔身端撑杆固定好,退掉销子后缓慢放下支撑杆,让辅助起吊装置受

塔吊天然基础的计算书(pkpm计算)

塔吊天然基础的计算书依据《塔式起重机混凝土基础工程技术规程》(JGJ/T 187-2009)。 一. 参数信息 二. 荷载计算 1. 自重荷载及起重荷载 1) 塔机自重标准值 F k1=1274.21kN 2) 基础以及覆土自重标准值 G k=5×5×(1.45×25+2×17)=1756.25kN 3) 起重荷载标准值 F qk=58.8kN 2. 风荷载计算

1) 工作状态下塔机塔身截面对角线方向所受风荷载标准值 a. 塔机所受风均布线荷载标准值 (Wo=0.2kN/m2) =0.8×1.77×1.95×0.99×0.2=0.55kN/m2 =1.2×0.55×0.35×1.6=0.37kN/m b. 塔机所受风荷载水平合力标准值 F vk=q sk×H=0.37×135=49.60kN c. 基础顶面风荷载产生的力矩标准值 M sk=0.5F vk×H=0.5×49.60×135=3347.88kN.m 2) 非工作状态下塔机塔身截面对角线方向所受风荷载标准值 a. 塔机所受风均布线荷载标准值 (本地区 Wo=0.30kN/m2) =0.8×1.81×1.95×0.99×0.3=0.84kN/m2 =1.2×0.84×0.35×1.6=0.56kN/m b. 塔机所受风荷载水平合力标准值 F vk=q sk×H=0.56×135=76.08kN c. 基础顶面风荷载产生的力矩标准值 M sk=0.5F vk×H=0.5×76.08×135=5135.31kN.m 3. 塔机的倾覆力矩 工作状态下,标准组合的倾覆力矩标准值 M k=-1552+0.9×(850.56+3347.88)=2226.60kN.m 非工作状态下,标准组合的倾覆力矩标准值 M k=-1552+5135.31=3583.31kN.m 三. 地基承载力计算 依据《塔式起重机混凝土基础工程技术规程》(JGJ/T 187-2009)第4.1.3条承载力计算。

塔吊基础设计计算书(桩基础)

塔吊基础设计计算书(桩基础) 一、编制依据 1、《建筑地基基础设计规范》(GB50007-2002 ); 2、《建筑地基基础设计规范》(DBJ 15-31-2003 ); 3、《建筑结构荷载规范》(GB 50009-2001 ); 4、《混凝土结构设计规范》(GB 50010-2002 ); 5、《简明钢筋混凝土结构计算手册》; 6、《地基及基础》(高等学校教学用书)(第二版); 7、建筑、结构设计图纸; 8、塔式起重机使用说明书; 9、岩土工程勘察报告。 二、设计依据 1、塔吊资料 根据施工现场场地条件及周边环境情况,选用1台QTZ160 自升塔式起重机。塔身自由高度56m,最大吊运高度为203米,最大起重量为10t,塔身尺寸为1.70m x 1.70m,臂长65m。 2、岩土力学资料,(BZK8孔) 3、塔吊基础受力情况

基础顶面所受垂直力 基础顶面所受水平力 基础所受倾翻力矩 基础所受扭矩 三、基础设计主要参数 基础桩: 4①800钻孔桩, 桩顶标高-2.90m ,桩长为15.96m ,桩端入微风化0.5m 。 承台尺寸:平面4.0 X 4.0m ,厚度h=1.50m ,桩与承台 中心距离为1.20m ;桩身混凝土等级:C25。 承台混凝土等级:C35 ; 承台面标高:-1.50m (原地面标高为-0.6m ,建筑物基坑开挖深度 为-11.9m )。 比较桩基础塔吊基础的工作状态和非工作状态的受力情况,桩基础 按非工作状态计算,受力如上图所示: F k =850.0kN G k = 25 X 4 X 4 X 1.50=600kN F h =70kN M k =3630+70 X 1.50=3735kN.m 四、单桩允许承载力特征值计算 1、单桩竖向承载力特征值: 1 )、按地基土物理力学指标与承载力参数计算 A p = n r 2 = 0.5027m 2 R a R sa R ra R pa (DBJ15-31-2003 ) ( 10.2.4-1 ) C 1 0.40; C 2 0.05; f rs 10MPa; f rp 10MPa R sa u q sia l i 3.1415926 0.8 (40 13.76 60 0.7) 1488.9kN F (1= /OlkliL 团 / =3630kN,tn J 丈h 80( 1 2400 -- 4000 d Fk -- Fh-- M ---- M Z ---- 塔吊基础受力示意图 Fk=850kN

塔吊计算书

附塔机基础及平衡重和塔吊计算书 ○1基础计算书 一、参数信息 塔吊型号:QTZ80,塔吊起升高度H:50.00m,塔身宽度B:1.6m,基础埋深d:1.60m, 自重G:600kN,基础承台厚度hc:1.00m,最大起重荷载Q:60kN,基础承台宽度Bc:5.50m,混凝土强度等级:C35,钢筋级别:HRB400, 基础底面配筋直径:25mm 二、塔吊对交叉梁中心作用力的计算 1、塔吊竖向力计算 塔吊自重:G=600kN; 塔吊最大起重荷载:Q=60kN; 作用于塔吊的竖向力:F k =G+Q=600+60=660kN; 2、塔吊弯矩计算 风荷载对塔吊基础产生的弯矩计算: M kmax =960kN·m; 三、塔吊抗倾覆稳定验算 基础抗倾覆稳定性按下式计算: e=M k /(F k +G k )≤Bc/3 式中 e──偏心距,即地面反力的合力至基础中心的距离; M k ──作用在基础上的弯矩; F k ──作用在基础上的垂直载荷; G k ──混凝土基础重力,G k =25×5.5×5.5×1=756.25kN; Bc──为基础的底面宽度; 计算得:e=960/(660+756.25)=0.678m < 5.5/3=1.833m;基础抗倾覆稳定性满足要求!

四、地基承载力验算 依据《建筑地基基础设计规范》(GB50007-2011)第5.2条承载力计算。 计算简图: 混凝土基础抗倾翻稳定性计算: e=0.678m < 5.5/6=0.917m 地面压应力计算: P k =(F k +G k )/A P kmax =(F k +G k )/A + M k /W 式中:F k ──塔吊作用于基础的竖向力,它包括塔吊自重和最大起重荷载,F k =660kN ; G k ──基础自重,G k =756.25kN ; Bc ──基础底面的宽度,取Bc=5.5m ; M k ──倾覆力矩,包括风荷载产生的力矩和最大起重力矩,M k = 960kN ·m ; W ──基础底面的抵抗矩,W=0.118Bc 3=0.118×5.53=19.632m 3; 不考虑附着基础设计值: P k =(660+756.25)/5.52=46.818kPa P kmax =(660+756.25)/5.52+960/19.632=95.717kPa ; P kmin =(660+756.25)/5.52-960/19.632=0kPa ; 实际计算取的地基承载力设计值为:f a =160.000kPa ; 地基承载力特征值f a 大于压力标准值P k =46.818kPa ,满足要求!

QTZ80塔吊天然基础的计算书

QTZ80塔吊天然基础的计算书 一)计算依据 1. 《建筑桩基技术规范》 JGJ94-2008; 2. 《混凝土结构设计规范》 (GB50010-2010); 3. 《建筑结构荷载规范》( GB 50009-2012); 4. 《xxxxxX 技术学院北区实训楼工程勘察报告》; 5. 《QTZ80塔式起重机使用说明书》; 6. 建筑、结构设计图纸; 7. 《简明钢筋混凝土结构计算手册》。 (二)参数数据信息 塔吊型号: QTZ80( TC6012A-6A ) 塔身宽度 B :1665mm 自重G: 596kN (包括平衡重) 最大起重荷载 Q :60kN 混凝土强度等级: C35 基础底面配筋直径: 25mm 公称定起重力矩Me 800kN ? m 标准节长度 b :2.80m 主弦杆材料:角 钢 / 方钢 所处城市:xx 省 xxx 基 地面粗糙度类D 类密集建筑群,房屋较咼,风荷载咼度变化系数 问 1.27 。 地基承载力特征值 f ak : 2000kPa 基础宽度修正系数n : 0.3 基础埋深修正系数n : 1.5 基础底面以下土重度Y 20kN/nf 基础底面以上土加权平均重度丫血 20kN/m 3 (三)塔吊基础承载力作用力的计算 1、塔吊竖向力计算 塔吊起升高度 H :40.00m 基础节埋深 d :0.00m 基础承台厚度 hc :1.00m 基础承台宽度 Bc :5.30m 钢筋级别: Q235A/HRB335 基础所受的水平力 P :80kN 宽度/直径c : 120mm 风压 30: 0.3kN/m 2

塔吊自重:G=596kN(整机重量422+平衡重174); 塔吊最大起重荷载: Q=60kN; 作用于塔吊的竖向力:F k= G+ Q= 596+ 60 = 656kN; 2、塔吊风荷载计算 依据《建筑结构荷载规范》(GB50009-2001中风荷载体型系数:地处贵州省 贵阳市,基本风压为w0=0.3kN/m2; 查表得:风荷载高度变化系数便=1.27; 挡风系数计算: 冋3B+2b+(4$+b2)1/2]c/(Bb)=[(3 X 1.665+2 X 5+(42拓0665< 0.12]/(1.665 X 5) =0.302 因为是角钢/方钢,体型系数临=2.402; 高度z处的风振系数取:皆1.0;所以风荷载设计值为: 3 =0.7 XX^s X zX(0=0.7 X 1.00 X 2.402 X 1.27 X 0.3=0%4kN/m 3、塔吊弯矩计算 风荷载对塔吊基础产生的弯矩计算: M L=oX?X B X H X H X4).X=0.302 X 1.665 X 100X 100X 0.5=1609kN ? M max= Me^ M0+ P X h c= 800+ 1609+ 80 X 1.4 = 2521kN ? m (四)塔吊抗倾覆稳定验算基础抗倾覆稳定性按下式计算:e= M/ ( F k+G)w Bc/3 式中e ----- 偏心距,即地面反力的合力至基础中心的距离; M k—作用在基础上的弯矩; F k——作用在基础上的垂直载荷; G k——混凝土基础重力,25 X 6.3 X 6.5 X 1.4=1479kN; Bc ------- 为基础的底面宽度; 计算得:e=2521/(656+1479)=1.18m < 6.3/3=2.2m ;基础抗倾覆稳定性满 足要求! (五)塔吊基础地基承载力验算 依据《建筑地基基础设计规范》(GB50007-2011)第5.2条承载力计算计算简 图: W-——

塔吊基础设计计算书

塔吊基础设计计算书 计算:闫宗权 审核:陈俊 一、工程概况 施工项目为13层住宅,其中地下室一层,建筑总高为42米,结构形式为框剪;塔吊选用昆明产*** 型塔吊。 二、基础计算 1、已知条件: 塔吊总重:920KN[=(自重+其他活载)×增大系数],塔吊搭设总高为50米,塔吊基础采用桩上承台基础,桩身混凝土采用C20,钢筋采用一级钢;承台基础混凝土为C30,钢筋采用二级钢;根据工程实际情况,采用工程桩桩径进行塔吊基础桩的施工,即桩采用426桩管,振动沉管灌注,成桩直径不少于450mm。 2、受力分析: 从塔式起重设备的工作原理进行分析,该生产设备在以下方面对设备的安全使用关系相当重要:设备的基础,设备结构,设备结构的材料,设备的工作性能和操作系统;在计算中重点求出设备基础的稳定性及设备抗倾覆的能力;因该工程的塔吊设备由生产厂家进行安装和施工中的施工材料垂直运输操作,现只对设备基础进行计算。 根据设备厂家的要求,结合工程实际情况,本设备基础(以下简称基础)不能完全按厂家提供的基础图进行施工,根据基础的受力特点,除求出基础的垂直承载力外,还应求出塔吊在最不利荷载组合下对桩基的抗拔能力。因此,根据前面的已知条件,同时按由昆明市建筑设

计研究院对本施工项目进行的地质勘察报告中第33孔的土层勘察情况对桩基进行设计,该孔土层力学性能指标如下: 土层号名称 Li qisk λi ui(1.413) ①, 杂填土 1.3 ②粉质粉土 0.6 35 ④3 粉土 1.8 45 ④1 砾砂 4.1 50 0.6 ⑥粘土 2 42 0.75 ⑥4 粉砂 1.7 48 0.60 ⑥1 有机质土 2.4 48 0.75 ⑥4 粉砂 2 48 0.6 3、计算 为满足塔吊对基础的稳定性要求,采用四桩承台,则: 920000÷4=230000 N (即单桩最大承载力) 按上述土层力学参数,求单桩极限抗拔力,考虑到本工程基坑开挖3米后对单桩抗拔力的影响,因此,从自然地面下3米开始根据各土层的力学性能指标进行计算: UK=Σλi .qsik .ui li =0.60×50×1.413×4.1+0.75×42×1.413×2.0+0.60×48×1.413×1.7+0.75×48×1.417×2.4+0.6×48×1.4 17×2=536.05Kqa<230Kpa(满足) 桩身配筋计算: 不考虑混凝土的抗拉强度,根据已知单桩总抗拔力为23000N计算,如采用一级钢筋,则:As=N/fC=230000/210=1095.24mm2

塔吊基础种类与计算书

7 种塔吊基础计算 目录 一、单桩基础计算 二、十字交叉梁基础计算 三、附着计算 四、天然基础计算 五、三桩基础计算书 六、四桩基础计算书 七、塔吊附着计算

一、塔吊单桩基础计算书 一. 参数信息 塔吊型号:QT60,自重(包括压重)F1=245.00kN,最大起重荷载F2=60.00kN 塔吊倾覆力距M=600.00kN.m,塔吊起重高度H=50.00m,塔身宽度B=1.60m 混凝土强度:C35,钢筋级别:Ⅱ级,混凝土的弹性模量 Ec=14500.00N/mm2 桩直径或方桩边长 d=2.50m,地基土水平抗力系数 m=8.00MN/m4 桩顶面水平力 H0=100.00kN,保护层厚度:50mm 二. 塔吊基础承台顶面的竖向力与弯矩计算 1. 塔吊自重(包括压重)F1=245.00kN 2. 塔吊最大起重荷载F2=60.00kN 作用于桩基承台顶面的竖向力 F=1.2×(F1+F2)=366.00kN 塔吊的倾覆力矩 M=1.4×600.00=840.00kN.m 三. 桩身最大弯矩计算 计算简图: 1. 按照m法计算桩身最大弯矩: 计算依据《建筑桩基础技术规范》(JGJ94-94)的第5.4.5条,并参考《桩基础的设计方法与施工技术》。 (1) 计算桩的水平变形系数(1/m): 其中 m──地基土水平抗力系数; b0──桩的计算宽度,b0=3.15m。 E──抗弯弹性模量,E=0.67Ec=9715.00N/mm2; I──截面惯性矩,I=1.92m4; 经计算得到桩的水平变形系数: =0.271/m (2) 计算 D v: D v=100.00/(0.27×840.00)=0.45 (3) 由 D v查表得:K m=1.21 (4) 计算 M max: 经计算得到桩的最大弯矩值: M max=840.00×1.21=1018.87kN.m。 由 D v查表得:最大弯矩深度 z=0.74/0.27=2.78m。

QTZ-315塔吊的计算书

一. 参数信息 QTZ-315塔吊天然基础的计算书 塔吊型号:QTZ315,自重(包括压重)F1=250.00kN,最大起重荷载F2=30.00kN, 塔吊倾覆力距M=315.40kN.m,塔吊起重高度H=28.00m,塔身宽度B=1.40m, 混凝土强度等级:C35,基础埋深D=1.30m,基础最小厚度h=1.30m, 基础最小宽度Bc=5.00m, 二. 基础最小尺寸计算 基础的最小厚度取:H=1.30m 基础的最小宽度取:Bc=5.00m 三. 塔吊基础承载力计算 依据《建筑地基基础设计规范》(GB50007-2002)第5.2条承载力计算。 计算简图: 当不考虑附着时的基础设计值计算公式: 当考虑附着时的基础设计值计算公式: 当考虑偏心距较大时的基础设计值计算公式: 式中F──塔吊作用于基础的竖向力,它包括塔吊自重,压重和最大起重荷载,F=1.2×280=336.00kN;G──基础自重与基础上面的土的自重,G=1.2×(25.0×Bc×Bc×Hc+20.0×Bc×Bc×D) =1275.00kN;Bc──基础底面的宽度,取Bc=5.00m; W──基础底面的抵抗矩,W=Bc×Bc×Bc/6=20.83m3;

M──倾覆力矩,包括风荷载产生的力距和最大起重力距,M=1.4×315.40=441.56kN.m;a──合力作用点至基础底面最大压力边缘距离(m),按下式计算: a=5.00/2-441.56/(336.00+1275.00)=2.23m。 经过计算得到: 无附着的最大压力设计值 Pmax=(336.00+1275.00)/5.002+441.56/20.83=85.63kPa 无附着的最小压力设计值 Pmin=(336.00+1275.00)/5.002-441.56/20.83=43.25kPa 有附着的压力设计值 P=(336.00+1275.00)/5.002=64.44kPa 偏心距较大时压力设计值Pkmax=2×(336.00+1275.00)/(3×5.00×2.23)=96.50kPa 四. 地基基础承载力验算 地基基础承载力特征值计算依据《建筑地基基础设计规范》GB 50007-2002第5.2.3条。计算公式如下: 其中fa──修正后的地基承载力特征值(kN/m2); fak──地基承载力特征值,取85.00kN/m2; b──基础宽度地基承载力修正系数,取0.30; d──基础埋深地基承载力修正系数,取1.60; ──基础底面以下土的重度,取19.00kN/m3; γm──基础底面以上土的重度,取19.00kN/m3; b──基础底面宽度,取5.00m; d──基础埋深度,取0.50m。 解得地基承载力设计值 fa=96.40kPa 实际计算取的地基承载力设计值为:fa=96.40kPa

塔吊基础计算书

天然基础计算书 123工程;工程建设地点:;属于结构;地上0层;地下0层;建筑高度:0m;标准层层高:0m ;总建筑面积:0平方米;总工期:0天。 本工程由投资建设,设计,地质勘察,监理,组织施工;由担任项目经理,担任技术负责人。 本计算书主要依据施工图纸及以下规范及参考文献编制:《塔式起重机设计规范》(GB/T13752-1992)、《地基基础设计规范》(GB50007-2002)、《建筑结构荷载规范》(GB50009-2001)、《建筑安全检查标准》(JGJ59-99)、《混凝土结构设计规范》 (GB50010-2002)等编制。 一、参数信息 塔吊型号:QTZ50,塔吊起升高度H:32.00m, 塔身宽度B:1.6m,基础埋深d:4.45m, 自重G:357.7kN,基础承台厚度hc:1.35m, 最大起重荷载Q:50kN,基础承台宽度Bc:5.50m, 混凝土强度等级:C35,钢筋级别:HRB335, 基础底面配筋直径:18mm 地基承载力特征值f ak:140kPa, 基础宽度修正系数ηb:0.15,基础埋深修正系数ηd:1.4, 基础底面以下土重度γ:20kN/m3,基础底面以上土加权平均重度γm:20kN/m3。 二、塔吊对交叉梁中心作用力的计算

1、塔吊竖向力计算 塔吊自重:G=357.7kN; 塔吊最大起重荷载:Q=50kN; 作用于塔吊的竖向力:F k=G+Q=357.7+50=407.7kN; 2、塔吊弯矩计算 风荷载对塔吊基础产生的弯矩计算: M kmax=1335kN·m; 三、塔吊抗倾覆稳定验算 基础抗倾覆稳定性按下式计算: e=M k/(F k+G k)≤Bc/3 式中 e──偏心距,即地面反力的合力至基础中心的距离; M k──作用在基础上的弯矩; F k──作用在基础上的垂直载荷; G k──混凝土基础重力,G k=25×5.5×5.5×1.35=1020.938kN; Bc──为基础的底面宽度; 计算得:e=1335/(407.7+1020.938)=0.934m < 5.5/3=1.833m; 基础抗倾覆稳定性满足要求! 四、地基承载力验算 依据《建筑地基基础设计规范》(GB50007-2002)第5.2条承载力计算。计算简图:

66塔吊附着计算书

北京星城瑞景 塔 吊 附 着 计 算 书

塔吊附着计算书 1、附着装置布置方案 根据塔机生产厂家提供的标准,附着距离一般为3~5 m,附着点跨距为7~8 m[1,2],塔机附着装置由附着框架和附着杆组成,附着框架多用钢板组焊成箱型结构,附着杆常采用槽钢或无缝钢管组焊成格构式桁架结构,受力不大的附着杆也可用型钢或钢管制成。 根据施工现场提供的楼面顶板标高,按照QTZ80 系列5613 型塔式起重机的技术要求,需设2道附着装置,以满足工程建设最大高度70 m 的要求。附着装置布置方案如图2 所示。 图1塔吊简图与计算简图 塔吊基本参数 附着类型类型1 最大扭矩270.00 kN·m 最大倾覆力矩1350.00 kN·m 附着表面特征槽钢 塔吊高度110 m 槽钢型号18A 塔身宽度1800*1800*3000 mm风荷载设计值(福州地区)0.41 附着框宽度 3.00 m 尺寸参数 附着节点数10 附着点1到塔吊的竖向距离7.00 m 第I层附着附着高度附着点1到塔吊的横向距离7.00 m 第8层27 m 附着点1到附着点2的距离15.00 m 第12层45 m 独立起升高度45 m

图2塔吊附着简图

2、第一道附着计算 塔机按照说明书与建筑物附着时,最上面一道附着装置的负荷最大,因此以此道附着杆的负荷作为设计或校核附着杆截面的依据。第一道附着的装置的负荷以第四道附着杆的负荷作为设计或校核附着杆截面计算,第一道附着高度计划在第8层楼层标高为23.45米。(一)、支座力计算 附着式塔机的塔身可以简化为一个带悬臂的刚性支撑连续梁,其内力及支座反力计算如下: 风荷载取值:Q = 0.41kN; 塔吊的最大倾覆力矩:M = 1668.00kN;

QTZ80(6013)塔吊基础天然基础计算书工程施工组织设计方案

目录 一、工程概况 (1) 二、塔吊概况 (1) 三、塔吊安装位置及基础型式选择 (1) 四、塔吊的使用与管理 (4) 五、塔吊基础 (4) 六、QTZ80(6013)塔吊天然基础的计算书 (5)

岗顶酒店工程塔吊基础施工方案 一、工程概况 二、塔吊概况 本工程施工计划设置塔吊1台,塔吊布设位置见平面布置图。采用QTZ80(6010)型塔吊,该塔吊独立式起升高度为45米,(本工程实际使用搭设高度约40米),工作臂长60米,最大起重量6吨,公称起重力矩为800KN.m。 综合本工程地质条件及现场实际情况,参照《兰田岙造船基地扩建项目岩土工程勘察报告》及工程设计图纸,本塔吊基础采用天然地基基础。 三、塔吊安装位置及基础型式选择 (一)塔吊生产厂家提供的说明书中对塔吊基础的要求: 1.地基基础的土质应均匀夯实,要求承载能力大于20t/㎡;底面为6000×6000的正方形。 2.基础混凝土强度C35,在基础内预埋地脚螺栓,分布钢筋和受力钢。 3.基础表面应平整,并校水平。基础与基础节下面四块连接板连接处应保证水平,其水平度不大于1/1000; 4.基础必须做好接地措施,接地电阻不大于4Ω。 5.基础必须做好排水措施,保证基础面及地脚螺栓不受水浸,同时做好基础保护措施,防止基础受雨水冲洗,淘空基础周边泥土。 6.基础受力要求:

H—基础所受水平力kN P V—垂直力kN M—倾覆力矩kN.m M Z—扭矩kN.m 基础受力图(二)本工程塔吊安装位置详见下图:

按塔吊说明书要求,塔吊铺设混凝土基础的地基应能承受0.2MPa的压力,根据本工程地质勘察报告及现场实际情况,塔吊基础位于4-2强风化砾岩层,该层土质的承载力达0.60MPa,满足塔吊基础对地基承载力的要求,且该土层也是建筑物基础所在持力层土层,以该土层作塔吊基础的持力层,既能满足塔吊使用要求,也不会有基坑开挖时引起塔吊基础变形的问题。

60塔吊基础计算书1

QTZ63塔吊天然基础的计算书 (一)参数信息 塔吊型号:QTZ63,自重(包括压重)F1=450.80kN,最大起重荷载F2=60.00kN,塔吊倾覆力距M=630.00kN.m,塔吊起重高度=70.00m,塔身宽度B=1.50m,混凝土强度等级:C35,基础埋深D=5.00m,基础最小厚度h=1.35m,基础最小宽度Bc=5.00m。 (二)基础最小尺寸计算 基础的最小厚度取:H=1.35m 基础的最小宽度取:Bc=5.00m (三)塔吊基础承载力计算 依据《建筑地基基础设计规范》(GB50007-2002)第5.2条承载力计算。 计算简图: 当不考虑附着时的基础设计值计算公式: 当考虑附着时的基础设计值计算公式: 当考虑偏心距较大时的基础设计值计算公式:

式中 F──塔吊作用于基础的竖向力,它包括塔吊自重,压重和最大起重荷载,F=1.2×510.8=612.96kN; G──基础自重与基础上面的土的自重,G=1.2×(25.0×Bc×Bc×Hc+20.0×Bc ×Bc×D) =4012.50kN; Bc──基础底面的宽度,取Bc=5.00m; W──基础底面的抵抗矩,W=Bc×Bc×Bc/6=20.83m3; M──倾覆力矩,包括风荷载产生的力距和最大起重力距,M=1.4× 630.00=882.00kN.m; a──合力作用点至基础底面最大压力边缘距离(m),按下式计算: a=5.00/2-882.00/(612.96+4012.50)=2.31m。 经过计算得到: 无附着的最大压力设计值 Pmax=(612.96+4012.50)/5.002+882.00/20.83=227.35kPa 无附着的最小压力设计值 Pmin=(612.96+4012.50)/5.002-882.00/20.83=142.68kPa 有附着的压力设计值 P=(612.96+4012.50)/5.002=185.02kPa 偏心距较大时压力设计值 Pkmax=2×(612.96+4012.50)/(3×5.00×2.31)=267.06kPa (四)地基基础承载力验算 地基承载力设计值为:fa=270.00kPa 地基承载力特征值fa大于最大压力设计值Pmax=227.35kPa,满足要求! 地基承载力特征值1.2×fa大于偏心距较大时的压力设计值Pkmax=267.06kPa,满足要求!据安徽省建设工程勘察设计院《岩土工程勘察报告》,Ⅰ#塔吊参227号孔,Ⅱ#塔吊参243号孔,Ⅲ#塔吊参212号孔,Ⅳ#塔吊参193号孔,Ⅵ#塔吊参118号孔,Ⅶ#塔吊参108号孔。 (五)受冲切承载力验算 依据《建筑地基基础设计规范》GB 50007-2002第8.2.7条。 验算公式如下: 式中hp──受冲切承载力截面高度影响系数,取hp=0.95; ft──混凝土轴心抗拉强度设计值,取 ft=1.57kPa;

TC5610塔吊基计算书

TC5610塔吊基础计算书

TC5610塔吊基础计算书 一、参数信息 塔吊型号:TC5610,塔吊起升高度H=40.00m, 塔吊倾覆力矩M=1552kN.m,混凝土强度等级:C35, 塔身宽度B=1.6m,最大起重荷载F2=60kN, 自重F1=456kN,基础承台厚度h=1.00m, 基础承台宽度Bc=5.00m,,钢筋级别:II级钢筋。 二、塔吊基础承载力计算 依据《建筑地基基础设计规范》(GB50007-2002)第5.2条承载力计算。 计算模型简图如下图所示: 当不考虑附着时的基础设计值计算公式: 当考虑附着时的基础设计值计算公式: 当考虑偏心矩较大时的基础设计值计算公式: 式中 F──塔吊作用于基础的竖向力,它包括塔吊自重,压重和最大起重荷载, F=(F1+ F2)×1.2=612.96kN;(恒载系数取1.2) G──基础自重与基础上面的土的自重:

G=1.2×25.0×Bc×Bc×Hc =750kN ;(恒载系数取1.2) Bc──基础底面的宽度,取Bc=5.00m; W──基础底面的抵抗矩,W=Bc×Bc×Bc/6=20.83m3; M──倾覆力矩,包括风荷载产生的力矩和最大起重力矩 M=1.4×1552 =2172.80kN.m;(安全系数取1.4) a──合力作用点至基础底面最大压力边缘距离(m),按下式计算: a= Bc / 2 - M / (F + G)=5/2-2172.8/(612.96+750)=0.906m。 经过计算得到:无附着的最大压力设计值 Pmax=(612.96+750)/52+2172.8/20.83=158.83kPa; 无附着的最小压力设计值 Pmin=(612.96+750)/ 52-2172.8/20.83=-49.79kPa; 有附着的压力设计值 P=(612.96+750)/ 52 =54.52kPa; 偏心矩较大时压力设计值 Pkmax=2×(612.96+750)/(3×5×0.906)=200.58kPa。 三、地基基础承载力验算 地基基础承载力特征值计算依据《建筑地基基础设计规范》GB 50007-2002第5.2.3条。 计算公式如下: fa--修正后的地基承载力特征值(kN/m2); fak--地基承载力特征值,按本规范第5.2.3条的原则确定;取180.000kN/m2; ηb、ηd--基础宽度和埋深的地基承载力修正系数; ηb=2.0,ηd=3.0; γ--基础底面以上土的重度,地下水位以下取浮重度,取20.000kN/m3; b--基础底面宽度(m),当基宽小于3m按3m取值,大于6m按6m取值,取5 m; γm--基础底面以上土的加权平均重度,地下水位以下取浮重度,取20.000kN/m3; d--基础埋置深度(m) 取0.90m; 解得地基承载力设计值:fa=284.00kPa; 实际计算取的地基承载力设计值为:fa=284.00kPa;

塔吊基础承载力计算书

塔吊基础承载力计算书 编写依据塔吊说明书要求及现场实际情况,塔基承台设计为5200m×5200m×1.3m,根据地质报告可知,承台位置处于回填土上,地耐力为4T/m2,不能满足塔吊说明书要求的地耐力≥24T/m2。为了保证塔基承台的稳定性,打算设置四根人工挖孔桩。 地质报告中风化泥岩桩端承载力为P=220Kpa。按桩径r=1.2米,桩深h=9米,桩端置于中风化泥上(嵌入风化泥岩1米)进行桩基承载力的验算。 一、塔吊基础承载力验算 1、单桩桩端承载力为: F1=S×P=π×r2×P=π×0.62×220=248.7KN=24.87T 2、四根桩端承载力为: 4×F1=4×24.87=99.48T 3、塔吊重量51T(说明书中参数) 基础承台重量:5.2×5.2×1.3×2.2=77.33T 塔吊+基础承台总重量=51+77.33=128.33T 4、基础承台承受的荷载 F2=5.2×5.2×4.0=108.16T 5、桩基与承台共同受力=4F1+F1=99.48+108.16=207.64T>塔吊基础总重量=128.33T 所以塔吊基础承载力满足承载要求。 二、钢筋验算 桩身混凝土取C30,桩配筋23根ф16,箍筋间距φ8@200。 验算要求轴向力设计值N≤0.9(fcAcor+fy’AS’+2xfyAsso) 必须成立。 Fc=14.3/mm2(砼轴心抗压强度设计值) Acor=π×r2/4(构件核心截面积) =π×11002/4=950332mm2 fy’=300N/MM2(Ⅱ级钢筋抗压强度设计值) AS’=23×π×r2/4=23×π×162/4 =4624mm2(全部纵向钢筋截面积) x=1.0(箍筋对砼约束的折减系数,50以下取1.0) fy=210N/mm2 (Ⅰ级钢筋抗拉强度设计值) dCor=1100mm (箍筋内表面间距离,即核心截面直径) Ass1=π×r2/4=π×82/4=16×3.14=50.24mm2(一根箍筋的截面面积) S螺旋箍筋间距200mm A’sso=πdCorAssx/s =π×1100×50.24/200=867.65mm2(螺旋间接环式或焊接,环式间接钢筋换算截面面积)因此判断式 N≤0.9(fcAcor+fy’AS’+2xfyAsso)=0.9(14.3×950332+300×4624+2×1.0×210×867.65)=15341360.6N 248.7KN<12382.87KN 经验算钢筋混凝土抗拉满足要求。

塔吊(四桩)基础计算书

塔吊基础专项施工方案 一、工程概况: 1、工程名称:洲技产品研发、生产工业园车间四~十四、办公楼项目 2、工程地点:东西湖区长青街十五支沟东、革新大道北 3、建设单位:武汉炬辉照明有限公司 4、设计单位:国家发展和改革委员会国家物资储备局设计院 6、地质勘察单位:武汉百思特勘察设计有限公司 7、监理单位:湖北天慧工程咨询有限公司 8、施工单位:湖北鹏程建设工程有限公司 本工程为1栋16层的办公楼,框架剪力墙结构,总建筑面积19258.9㎡,;地上16层;地下1层;建筑高度:49.6m;标准层层高:3m 。另有11栋车间,框架结构,均为地上4层,建筑高度均为19.2m,工程相对标高±0.000相当于绝对标高21.3m。本工程塔吊1台,覆盖办公楼、12~14#车间共四栋楼。 二、编制依据: 1、洲技产品研发、生产工业园车间四~十四、办公楼工程施工总平图; 2、洲技产品研发、生产工业园车间四~十四、办公楼地质勘察报告; 3、 80(5710)塔式起重机使用说明书; 4、《塔式起重机设计规范》(13752-1992) 5、《地基基础设计规范》(50007-2002) 6、《建筑结构荷载规范》(50009-2001) 7、《建筑安全检查标准》(59-99) 8、《混凝土结构设计规范》(50010-2002) 9、《建筑桩基技术规范》(94-2008)。 三、塔吊平面布置: 本工程配置塔吊1台 80(5710)塔吊,位于地下室的南面,采用桩上承台式,其平面布置详见平面布置图。

四、塔吊基础设计: 1、塔吊采用桩上承台式,塔吊基础桩采用4根800钻孔灌注桩,桩中心距3400,桩身砼强度等级考虑进度要求采用C30,内配筋选用1014,螺旋箍 8@200,加强筋14@2000,钢筋笼长度全桩长配置,2/3以下钢筋减半,桩顶锚入承台100,桩筋锚入承台长度不少于500,桩上承台尺寸为5000×5000×1500,配筋16@160双层双向。塔吊承台做100厚C15砼垫层,基础砼强度等级为C30. 2、塔吊基础设计承台、桩顶、桩底标高 塔吊,位于地下室部位的南面,搭设高度70米,采用附着式高度,工程相对标高±0.000相当于绝对标高21.3m,承台面标高-3.400m,(黄海高程17.900m),桩顶标高-4.800m (黄海高程16.500m),有效桩长(计算桩长)35~36m,进入持力层6-2层≥7.5m为准。 五、塔吊的基本参数信息 塔吊型号:80,塔吊起升高度H:70.000m, 塔身宽度B:1.6m,基础埋深D:1.500m, 自重F1:440.02,基础承台厚度:1.50m, 最大起重荷载F2:80,基础承台宽度:5.000m, 桩钢筋级别400,桩直径或者方桩边长:0.800m, 桩间距a:3.4m,承台箍筋间距S:160.000, 承台混凝土的保护层厚度:50,承台混凝土强度等级:C30; 六、塔吊基础承台顶面的竖向力和弯矩计算 塔吊自重(包括压重)F1=440.02, 塔吊最大起重荷载F2=80.00, 作用于桩基承台顶面的竖向力1.2×(F12)=624.02, 风荷载对塔吊基础产生的弯矩计算: =1350·m; 七、承台弯矩及单桩桩顶竖向力的计算

相关文档
最新文档