热力系统动态优化模型
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Wi W0 Wi = × = η0 ηti Q0 Q0 W0
(2)
其中, W0 是在从锅炉的热量 Q0 在主循环中能够做 出的功; η 0 = W0 / Q0 为主循环的热效率,反映了 主循环的完善程度(已经考虑了给水泵的作用) ; 将 ηti = Wi / W0 定义为热力系统的内效率,反映了 实际循环接近于主循环的程度,是热力系统完善 程度的度量。当热力系统无任何汽、水和散热损 失,完全按主循环运行时, ηti = 1 。在热力系统性 能分析中,提高 η0 属于优化问题,提高 ηti 属于辅 助循环能损分析问题。
2 凝汽式汽轮机绝对内效率计算公式的改进
对于凝汽式汽轮机,其绝对内效率计算公式[1] 为 ηi = 式中 Wi Wa Wi = × = ηt ηri Q0 Q0 Wa (1)
Q0 为热力系统从锅炉吸收的热量;Wi 为汽
轮机的内功; Wa 为汽轮机的理想内功;ηt=Wa/Q0 为热力循环的理想热效率; ηri = Wi / Wa 为汽轮机
(5)
式中 ei 表示第 i 个分量为 1、其余分量为 0、维 数为 (n+1)的行向量,也是第 i 能级有单位能量的 广义热量。 从式 (5)右边可以看出:一方面, ei A−1 表示 从 A−1 中取出第 i 行元素所组成的行向量;另一 方面,根据式 (4), ei A−1 又表示仅第 i 能级有单 位吸热的广义热量 ei 加入热力系统所产生的流 量分布向量。因此, A−1 是由各能级单位吸热所 产生的 流量 分布 向量 逐行 排列 而成的矩 阵, 故 称 A−1 为流量分布矩阵。 3.2 主循环流量分布计算 在热力系统的主循环中,产生流量分布的外
218
中
国
电
机
工
程
学
报
第 24 卷
的相对内效率。 由于在进行热力系统性能分析时,热力循环 的理想热效率 ηt 是未知的,所以用式 (1) 进行热力 系统性能分析不可行。故将凝汽式汽轮机绝对内 效率计算式改为
量。当工质从加热器流向汽轮机时为正值,当工 质从汽轮机流向加热器时为负值。 现给出热力系统结构矩阵 A 的逆矩阵 A−1 的物理解释:热力系统结构矩阵的逆矩阵 A−1 本 质上是非调节抽汽流量分布矩阵。对 A−1 左乘单 位矩阵 I,进行如下变形:
e0 A−1 1 ... 0 ... 0 # # # # A−1 = IA−1 = 0 ... 1 ... 0 A−1 = ei A−1 # # # # e A−1 0 ... 0 ... 1 n
ηi =
ABSTRACT: A dynamic optimization model of thermal system in a thermal power plant is proposed to analyze realtime energy loss distribution in the system, and to solve its dynamic optimization. Calculation method of absolute efficiency of steam turbine is improved in order to meet the demand of online calculation and performance analysis. The problem of optimization for its main cycle is different from the problem of analysis of its energy loss distribution in the new model. Converse matrix of structure matrix of thermal system is a matrix of flow distribution of thermal system in nature. Based on main cycle of the system, a group of equations are conducted to calculate the changes of its main cycle efficiency when parameters of its main cycle go through virtual processes. Optimum performance of thermal system can be approached gradually by choosing composition of controllable parameters that can improve the real-time efficiency of main cycle. Energy loss distribution of auxiliary cycles of the system can be determined dynamically. KEY WORDS: Power plant; Optimization; Matrix; Performance; Dynamic. 摘要:提出了火电厂热力系统动态优化模型,用于实时分 析热力系统的能损分布,确定动态优化方案。对凝汽式汽 轮机绝对内效率的计算方法进行了改进以适应实时机组性 能分析的需要。将热力系统的优化问题和辅助循环能损分 析分开处理。热力系统结构矩阵的逆矩阵本质上是热力系 统流量分布矩阵。文中给出了主循环流量分布的计算方法, 并以热力系统主循环作为优化分析和能损分析的基础,用 虚变化来研究主循环参数变化对主循环热效率的影响,给 出了主循环热效率随主循环参数变化的计算公式。选择能 够使主循环效率增加的参数组合,能使主循环效率在机组 变工况条件下不断地逼近最优工况,实现最优运行。能损 分析可动态地确定辅助循环的损失分布。 关键词:火电厂;优化;矩阵;性能;动态
当非调节抽汽位于再热器与凝汽器之间时,
σ i = 0 ;当非调节抽汽位于锅炉与再热器之间时, σ i = σ ( σ 为单位工质流过再热器时的吸热量)。
4 热力系统主参数变化时主循环效率增量 计算方法
热力系统主参数是指主汽压力、温度,再热 压力、温度,排汽压力和加热器端差等。设想主 参数以实际工况为起点经历一个有限的虚变化, 计算虚变化对热力系统主循环热效率的影响。在 计算中,认为虚变化未影响到流量分布矩阵 A−1。 ( 1 )当主汽压力或温度经历一个虚变化时, 受到影响的变量为从锅炉和再热器的吸热量及位 于锅炉和再热器之间的非调节抽汽焓,对于式(10) 取差分得
文献标识码:A
热力系统动态优化模型
闫水保 1, 韦红旗 2, 徐治皋 2
(1.华北水利水电学院动力工程系,河南 郑州 450008; 2. 东南大学动力工程系,江苏 南京 210096 )
DYNAMIC OPTIMIZATION MODEL OF THERMODYNAMIC SYSTEM
YAN Shui-bao1, WEI Hong-qi2, XU Zhi-gao2 (1. North China Institute of Water Conservancy and Hydraulic Power, Zhengzhou 450008, China; 2. Southeast University, Nanjing 210096, China)
(3)
部作用有锅炉吸热(不包括再热器吸热)和给水泵焓 升,以锅炉单位吸热(不包括再热器吸热)为计量单 位,可将这两种作用写成广义热量形式,即 a BP = [1, " , ∆τ p q0 , " ,0] 式中
当 i = j 时, ai , j = q j ;当 i < j 时,若第 j 能级 的加热器接收第 i 能级加热器的疏水,则 ai , j = γ j , 否则 ai , j = τ j ;当 i > j 时, ai , j = 0 。 q j 、 γ j 、 τ j 分别为第 j 能级加热器的非调节抽汽放热量、疏水 放热量和给水焓升;n 为非调节抽汽级数。 热力系统结构矩阵 A 本质上是热力系统的 吸热矩 阵, 反映 了凝 汽器 凝结 水焓与非 调节 抽 汽焓在 数值 上的 差异 。若 凝汽 器中的凝 结水 吸 收的热量连续充满热力系统的一组能级 ( 结构矩 阵中的一行 ) ,就能变成相应某能级的非调节抽 汽。 由文 [2] 可知:若热力系统受到广义热量 ( 焓 向量 ) axi 的加热,其产生的流量分布向量 Dxi 为 Dxi = a xi A−1 (4) 其中, a xi = [a xi ,0 , a xi ,1 ," , a xi , n ] , a xi, j 为作用于第 j 能级的能量; Dxi = [Dxi,0 , Dxi,1,", Dxi, n ] , Dxi , j 为 由广义热量 axi 产生的流量分布中第 j 能级的分流
第 24 卷 第 4 期 2004 年 4 月 文章编号:0258-8013 (2004) 04-0217-04
中 国 电 机 工 程 学 Proceedings of the CSEE 中图分类号:TK621.4
报
Vol.24 No.4 Apr. 2004 ©2004 Chin.Soc.for Elec.Eng. 学科分类号:470⋅2099
1 引言
火电厂中的热力系统是实现热能向机械能转 化的系统,其效率的高低对火电厂热经济性有很 大影响,深入研究提高热力系统热经济性的途径 具有重要的现实意义。运用计算机对热力系统的 运行工况进行实时监测和性能分析是提高其热经 济性的重要手段。国内外许多学者对此进行了广 泛的研究[1~8] ,但是,目前的能耗分析和运行优化 理论是建立在“小偏差”分析之上的,当实际工 况偏离基准工况较远时,这些方法的误差较大。 本文将热力系统变工况下的性能分析分为两 个阶段:第一个阶段为优化阶段,目的是根据主 循环参数变化计算主循环效率增量;第二个阶段 为辅助循环能损分析阶段,主要是研究辅助循环 热耗率的计算方法,评价热力系统的完善程度。 当机组负荷变化时,分析基准随负荷的动态变化, 从而提高了分析结果的可靠性,为热力系统运行 优化和改进提供更为准确的数据。
3 热力系统的流量分布矩阵和主循环流量分 布计算
3.1 流量分布矩阵 由文[2]可知:热力系统的结构矩阵为
a 0 , 0 " a 0 ,i # # A = 0 " a i ,i # # 0 " 0
" a 0, n # " a i ,n # " a n,n
(6)
∆τ p 为给水泵焓升; q0 为锅炉吸热(不包括
再热器吸热); ∆τ / q0 位于给水泵所处的能级上。 以锅炉单位吸热(不包括再热器吸热)为计量单 位的主循环流量分布向量为 z = [ z0 , z1 , " , z n ] = a BP A−1 在主循环中,再热器流量 zR 为
(7)
zR =
式中
∑z
i =0
m
i
(8)
m 为再热器所处的能级号。 凝汽流量 zc 为 zc =
主循环热效率为
n
∑z
i =0 iபைடு நூலகம்
n
i
(9)
η0 =
∑ z (h + σ
i i =0
i
− hc − η 0σ i )
(10)
第4期
闫水保等: 热力系统动态优化模型
219
式中
hi 为非调节抽汽焓; hc 为汽轮机排汽焓;
( 4 )当加热器的上端差发生虚变化,回热系 统广义加热向量会发生变化,若第 j 能级加热器端 差增加 ∆τ j ,则第 j − 1 能级加热器给水焓升将减 少 ∆τ j ,相当于将 zu, j ∆τ j 的热能从第 j 能级提升 到第 j − 1 能级。令 z u, j 为相对于锅炉单位吸热 ( 不 包括再热器吸热)时第 j 能级加热器给水流量,其 值可根据主循环流量分布求出,则回热系统广义 加热向量变化量为 ∆aBP = [0," ,zu , j ∆τ j , − zu , j ∆τ j ,0," ,0] 根据式(7)和式(10),主循环热效率也可写为