矿井通风课程设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章矿井通风系统的确定
第一节概述
某矿地处平原、地面标高+150m,井田走向长度5km,倾斜方向长度3。3km。井田上界以标高-165m为界,下界以标高-1020m为界,两边以断层为界,井田内煤层赋存稳定,井田可采储量约1.08亿吨。根据开采条件,煤炭供求状况及“规程”规定,确定此矿为年产150万吨的大型矿井,服务年限为72年。
井田内有两个开采煤层,为K1、K2,在井田范围内,煤层赋存稳定,煤层倾角15°,各煤层厚度,间距及顶底板岩性参见综合柱状图。矿井相对瓦斯涌出量为6.6m 3/t,煤层有自然发火的危险,发火期为16~18个月,煤尘有爆炸性,爆炸指数为36%。
根据开拓开采设计确定。采用立井多水平上下山开拓,第一水平标高—380m,倾斜长为2
825 m,服务年限为27年,因走向较短,两翼各布置一个采区。每个采区上山部分和下山部分各分为五个区段回采。每采区各布置一个综采工作面和一个高档普采工作面,工作面长度150m,区段平巷及区段煤柱15m,综采工作面产量为在K1煤层时为1620吨/日,在K2煤层时为1935吨/日,日进6刀,截深0.6m,高档普采工作面产量为在K1煤层时为1080吨/日,在K2煤层时为1290吨/日,日进4刀,截深0.6m,东翼还另布置一个备用的高档普采工作面,综采工作面装备的部分机电设备如表1-2所示,采区巷道采用集中联合布置。
采区轨道上山均布置在K2煤层的底板稳定细砂石中,区段回风平巷与运输上山,区段运输平巷与轨道上山采用石门连接,为了保证生产正常接替,前期东西两翼各安排两个独立通风的煤层平巷掘进头,后期东西两翼各安排两个独立通风的煤层平巷掘进头和一个岩石下山掘进头。东西两翼各有一个绞车房、变电所、火药库,亦需独立通风。井为箕斗井提煤用,井为罐笼井升降人员、材料、矸石,也作为进风井用,并设有梯子间。
部分巷道名称、长度、支护形式,断面几何特征参数列入表1-1
表1-1
编号井巷名称支护形式断面(m2)周长(m)
1 副井井筒混凝土35.8 21.90
2 井底车场及主石门锚喷14.2 10.4
3 井底运输大巷锚喷12.8 13.6
4 采区下部车场锚喷12.8 13.6
5 轨道上山锚喷10.1 12.0
6 运输机上山锚喷9.6 11.8
7 综采区段进风平巷U型支架9.6 12.9
8 综采区段回风平巷U型支架9.6 12.9
9 液压支架工作面7.80 11.95
10 高档普采工作面区段进风平巷钢轨支架9.6 12.9
11 高档普采面区段回风平巷钢轨支架9.6 12.9
12 高档普采面液压支柱9.4 11.0
13 高档普采备用进风平巷钢轨支架9.6 12.0
14 区段平石门锚喷10.28 12.4
15 采区回风石门锚喷10.08 12.4
16 风井混凝土12.8 13.6
17 总回风平巷锚喷9.62 11.70
18 风峒混凝土
井内的气象参数按表1-3所列的平均值选取,除综采工作面采用4-6制工作制外,其他均采用3-8制工作。
综采工作面部分机电设备一览表
表1-2
序号地点机械设备名称容量(千瓦)
1 工作面MLS3-170双滚筒采煤机170
2 工作面SGW-250型溜子125×2
3 下顺槽S2Q-75型转载机75
4 下顺槽SD-160运输机150
5 工作面KBY-62矿用支架防爆重光灯0.062×10
空气平均密度一览表
表1-3
季节地点进风井筒(kg/m3)出风井筒(kg/m3)
冬 1.24 1.20
夏 1.20 1.24
井下同时作业的最多人数为700人,综采工作面同时作业最多人数40人,高档普采工作面同时作业最多人数60人。
第二节矿井通风系统
一、矿井通风方式
根据前述矿井的地质概况,开拓方式及开采方法,提出本矿井前25年左右的矿井通风系统方案为:中央边界式、两翼对角式和分区对角式。表2-1为三者的优缺点及适用条件。
表2-1
通风方式图示适用条件及优缺点
中央边界式
通风阻力较小,内部漏风较小。工业广场不受主要通风机噪声的影响及回风风流的污染
风流在井下的流动线路为折返式,风流线路长,阻力较大适用于煤层倾角较小、埋藏较浅,井田走向长度不大,瓦斯与自然发火比较严重的矿井
两翼对角式
风流在井下的流动线路是直向式,风流线路短,阻力小。内部漏风少中。安全出口多,抗灾能力强。便于风量调节,矿井风压比较稳定。工业广场不受回风污染和通风机噪声的危害
井筒安全煤柱压煤多,初期投资大,投产较晚
煤层走向大于4km,井型较大,瓦斯与发火严重的矿井;或低瓦斯矿井,煤层走向较长,产量较大的矿井
分区式
每个采区有独立通风线,互不影响,便于风量调节,安全出口多,抗灾能力强,建井工期短,初期投资少,出煤快
占用设备多,管理分散,矿井反风困难
煤层埋藏浅,或因地表高低起伏大,无法开掘总回风巷
经过上表的粗略的技术比较,考虑到本矿井为两个采区,故两翼对角式和分区对角式差别不大的原因,因此将分区对角式排除在外。在剩下的方案一:中央边界式;方案二:分区对角式中做经济比较。见表2-2
表2-2
矿井通风方案经济比较
单位(万元)名称数量掘进费维护费合计项目
方案
方案一总回风巷 1 0.3×2500=750 (40+20)×2=120 1122 风井 1 0.8×315×0.3=252
方案二总回风巷0 0 (20+15)×4=140 644 风井 2 0.8×315×2=504
从表2-1中可以看出中央边界式风流在井下的流动线路为折返式,风流线路长,阻力较大不适合现在的高产高效矿井。根据表2-2的经济比较,方案二投资成本较低,再加上本矿井煤层有自然发火危险,发火期限比较长,煤尘有爆炸性等因素,为了使每个采区互不影响,所以综上述考虑采用两翼对角式更为合理。
二、采区通风方式
㈠确定采区的通风方式并作技术比较
采区应该有足够的供风量,并按需分配到各个采、掘工作面。为此采区通风系统就满足以下要求:
⑴一个采区,都必须布置回风巷,实行分区通风。
⑵采煤工作面和掘进工作面都应采用独立通风。
⑶采煤工作面和掘进工作面的进风和回风,都不得经过采空区和冒落区。
本矿井各采区都设置两条上山即运输机上山及轨道上山。为此采区通风方式有两种方案。
方案一、轨道上山进风,运输机上山回风
方案二、运输机上山进风,轨道上山回风
轨道上山进风,新鲜风流不受煤炭释放的瓦斯、煤尘污染及放热影响,轨道上山的绞车房易于通风;变电所设在两上山之间,其回风口设置调节风窗,利用两上山间的风压差通风。
输送机上山进风,由于风流方向与运煤方向相反,容易引起煤尘飞扬,煤炭在运输过程中所释放的瓦斯,可使进风流的瓦斯和煤尘浓度增大,影响工作面的安全卫生条件;输送机上山设备所散发的热量,使进风流温度升高。此外,须在轨道上山的下部车场内安设风门。为此,根据本矿井采区条件,综合考虑采用轨道上山进风,运输机上山回风比较合理,通风管理相对较容易。
㈡采煤工作面通风方式
确定采煤工作面的通风方式并作技术比较
工作面的回采顺序有前进式和后退式,前进式与后退式相比,回采时不用提前掘出回采巷道,可以边采边掘,但是回采巷道的上、下顺槽的维护费用多。并且新鲜风流首先通过采空区,漏风严重,且风流会带着采空区涌出的瓦斯进入工作面,容易使瓦斯超限。煤层本身具有自然发火危险,前进式通风使自然发火更加容易,增加通风管理难度,故考虑采用后退式回采顺序。