太阳能电池材料的研究及应用状态
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
太阳能电池材料的研究及应用状态
施宗财设制130****3044-----
[摘要]太阳能是各种可再生能源中最重要的基本能源,生物质能、风能、水能等都来源
于太阳能。太阳能电池是是一种通过光伏效应将太阳能转变为电能的一种装置,是利用太阳能的一种重要形式。目前,人们根据半导体材料将太阳能电池分为晶硅与薄膜两大类。晶硅由于成本较高,限制其发展。薄膜电池具有生成成本低、原材料消耗少、弱光性等优势,还能实现光伏建筑一体化,易于大面积推广,适用于大规模应用与工业生产。
[关键字]晶硅薄膜电池太阳能电池研究现状发展趋势
1.前言
目前,人们根据所选用的半导体材料将太阳能电池应用技术分为晶硅和薄膜两大类。晶硅太阳能电池在现阶段的大规模应用和工业生产中占据主导地位,但由于其成本过高,限制了其发展。相比晶硅等其它太阳能电池,薄膜太阳能电池具有生产成本低、原材料消耗少、弱光性能优良等优势。随着世界能源紧缺,薄膜太阳能电池作为一种光电功能薄膜,可以有效地解决能源短缺问题,而且无污染,还可以实现光伏建筑一体化,易于大面积推广。
2.太阳能电池材料以及特点及其应用状态:
1.)非晶硅薄膜太阳能电池
非晶硅薄膜太阳能电池转换效率较低,实验室转换效率只有13%,但工艺成熟、成本较晶硅低廉、制备方便,适于大规模生产。
非晶硅薄膜太阳能电池通常为叠层结构,玻璃基板上沉积了透明导电膜(transparentconductiveoxide,TCO)层、非晶硅层(a—Si层)和背电极层(Al/ZnO 层)3层薄膜,其中非晶硅层通过磁控溅射法沉积。
相对于单晶硅太阳能电池,非晶硅薄膜是一种极有希望大幅度降低太阳电池成本的材料。非晶硅薄膜太阳能电池具有诸多优点使之成为一种优良的光电薄膜光伏器件。(1)非晶硅的光吸收系数大,因而作为太阳能电池时,薄膜所需厚度相对其他材料如砷化镓时,要小得多;(2)相对于单晶硅,非晶硅薄膜太阳能电池制造工艺简单,制造过程能量消耗少;(3)可实现大面积化及连续的生产;(4)可以采用玻璃或不锈钢等材料作为衬底,因而容易降低成本;(5)可以做成叠层结构,提高效率。
但同时非晶硅薄膜太阳能电池仍存在一些需要解决的问题。(1)由于Staebler-Wronski 效应的存在,使得非晶硅薄膜太阳能电池在太阳光下长时间照射会产生效率的衰减,从而导致整个电池效率的降低;(2)沉积速率低,影响非晶硅薄膜太阳能电池的大规模生产;(3)后续加工困难,如Ag电极的处理问题;(4)在薄膜沉积过程中存在大量的杂质,如O2、N2、C等,影响薄膜的质量和电池的稳定性。
非晶硅薄膜太阳能电池的下一步研究主要有以下几个方向:其一是采用优质的底电池i 层材料;其二朝叠层结构电池发展;第三是在保证效率的条件下,开发生产叠层型非晶硅太阳电池模块技术;最后使用便宜封装材料以降低成本。
2.)多晶硅薄膜太阳能电池
poly-Si薄膜电池既具有晶体硅电池的高效、稳定、无毒、材料资源丰富,又具有薄膜电池的材料省、成本低的优点,它在长波段具有高光敏性,对可见光能有效吸收,且具有与晶体硅一样的光照稳定性,同时材料制备工艺相对简单,poly-Si薄膜电池技术有望使太阳电池组件的成本得到更大程度的降低,从而使得光伏发电的成本能够与常规能源相竞争。
限制太阳能电池转换效率的因素很多,提高吸光率和减少载流子复合是提高转换效率最重要的2种方法。
众所周知,吸光率越大,电池转换效率越高,短路电流密度.,筻也越大。si对可见光的光学吸收长度约为150um。由此可见,传统单晶与非晶硅太阳能电池的厚度为200um左右,有利于充分吸收太阳光能量。按照国际认定的标准,新一代薄膜太阳能电池的厚度应在50um以下。这意味着必须使较长波段的光在薄膜的上下表面间来回反射,以增加其光程,达到提高吸光率的目的。要使吸光率A(λ)在宽谱带范围内达到高值,可以采取以下2种方法。
第一种方法是使薄膜电池上表面反射系数Rf接近于0。为此,通常采用由ZnS、MgF、TiO2和Si构成的单层或多层减反膜。第二种方法是使薄膜电池背面的反射系数Rb接近理想的100%,通常用在基片上蒸镀金属膜作为反射层的方法增加电池背面的反射系数。
无论体晶硅还是薄膜硅太阳能电池,其内部的载流子复合都是不可避免的。在si薄膜太阳能电池中,大量的载流子复合发生在杂质中心、表面、界面和晶界处L2J在多晶硅薄膜和微晶硅薄膜中,晶界处会有晶界复合。为了减少这些复合。应尽可能减少薄膜中不需要的杂质,增大多晶硅和微晶硅薄膜中的晶粒尺寸等。
3.)CIGS薄膜太阳能电池
铜铟镓硒薄膜太阳能电池是第三代太阳能电池的首选,并且是单位重量输出功率最高的太阳能电池。所谓第三代太阳能电池就是高效/低成本/可大规模工业化生产的铜铟镓硒(CIGS)等化合物薄膜太阳能电池。
CIGS具有非常优良的抗干扰、耐辐射能力,因而没有光辐射引致性能衰退效应,使用寿命长。CIGS是直接带隙的半导体材料,因此电池中所需的CIGS薄膜厚度很小(一般在2um
左右)。它的吸收系数非常高达10-5cm-1,同时还具有很好的非常大范围的太阳光谱的响应特性。通过调节Ga/(In+Ga)可以改变CIGS的带隙,调节范围为1.04eV~1.72eV。CIGS 系电池可以很方便地做成多结系统,在四个结的情况下,从光线入射方向按禁带宽度由大到小顺序排列,太阳能电池的理论转换效率极限可以超过50%。
CIGS薄膜在高于500℃的温度下沉积在涂有Mo的玻璃衬底上,并且与通过化学沉积形成的CdS层,组成CdS/CIGS异质结太阳能电池。以掺镓的CIS(CIGS)和以CdS为缓冲层制成的太阳能电池效率已高达21.5%。
目前大多数CIGS电池组件都含有CdS缓冲层,但使用CdS缓冲层也存在一些缺点。从恢复短波光生电流的观点来看,应该使用禁带宽度更宽的缓冲层,从环境的观点来看,镉的毒性将对环境产生负面影响。因此近年来研究使用的缓冲层材料有ZnS、In2S3、ZnSe、ZnO、SnO2、ZnIn2Se等,以取代CdS作为缓冲层,实现制备绿色无镉高效CIGS薄膜太阳电池,同时为了节约原材料和能源,还应该考虑尽可能地减小薄膜厚度。
4.)碲化镉薄膜太阳能电池
10cm*10cm小型碲化镉薄膜太阳能电池模组碲化镉薄膜太阳能电池简称CdTe电池,它是一种以p型CdTe和n型Cd的异质结为基础的薄膜太阳能电池。
第一个碲化镉薄膜太阳能电池是由RCA实验室在CdTe单晶上镀上In的合金制得的,其光电转换效率为2.1%。1982年,Kodak实验室用化学沉积法在P型的CdTe上制备一层超薄的CdS,制备了效率超过10%的异质结p-CdTe/n-CdS薄膜太阳能电池。这是现阶段碲化镉薄膜太阳能电池的原型。20世纪90年代初,碲化镉薄膜太阳能电池已实现了规模化生产,但市场发展缓慢,市场份额一直徘徊在1%左右。目前碲化镉薄膜太阳能电池在实验室中获得的最高光电转换效率已达到17.3%[1]。其商用模块的转换效率也达到了10%左右。碲化镉薄膜太阳能电池的优点如下:
①理想的禁带宽度。CdTe的禁带宽度一般为1.45eV,CdTe的光谱响应和太阳光谱非常匹配。
②高光吸收率:CdTe的吸收系数在可见光范围高达104cm-1以上,95%的光子可在1μm厚的吸收层内被吸收。
③转换效率高:碲化镉薄膜太阳能电池的理论光电转换效率约为28%。
④电池性能稳定:一般的碲化镉薄膜太阳能电池的设计使用时间为20年。
⑤电池结构简单:制造成本低,容易实现规模化生产。
碲化镉薄膜太阳能电池的结构
碲化镉薄膜太阳能电池是在玻璃或是其它柔性衬底上依次沉积多层薄膜而构成的光伏器件。一般标准的碲化镉薄膜太阳能电池由五层结构组成: