一种新型三线式宽频带短波基站天线

一种新型三线式宽频带短波基站天线
一种新型三线式宽频带短波基站天线

天馈伺系统

一种新型三线式宽频带短波基站天线*

屠振,白贵芳,张广求,邢锋

(解放军信息工程大学信息工程学院,郑州450002)

=摘要> 提出了一种新型三线式宽频带短波基站天线的详细设计过程,对天线进行了仿真分析和实际测试,该天线在2MH z~30MH z频带范围内满足电压驻波比小于2.0,相对增益可达3dB i~5dB,i比普通宽带短波基站天线工作频带宽、辐射效率高。而且适应于不同用途,三线式短波基站天线具有平拉和倒-V.两种架设方式。

=关键词> 三线天线;平衡2不平衡阻抗变换器;电压驻波比

中图分类号:TN822文献标识码:A

A N e w K ind Three2lineW i de Band H F Base2sta ti on An tenna

T U Zhen,BA I Gui2f ang,Z HANG Guang2q i u,X I N G Feng

(Inf or m ati o n Engineeri n g College of I nf or mation Engineeri n gU niversity,PL A,Zhengz hou450002,China)

=Ab str act> The desi gn process of a new ki nd t hree2li ne w i de bandH F base2stati on antenna is proposed.And t he antenna is si m u lated and practi ca llym easured.Its VS WR of the2MH z~30MH z frequency band i s belo w2.0,and its relative ga i n can a rri ve at3dB i~5dB.i So its band w i dth is w i der than the traditi onal w i de band HF sta tio n antenna,and its radiati on e fficiency is also h i gher than it.To be fit f or d ifference usages,this antenna has t wo setti ng2up m ethods:hor izo n tal and i nverted V.

=K ey w or ds>three2li ne antenna;balanced2unbalanced i m pedance transf or m er;VS WR

0引言

天线是影响短波通信效果的主要因素之一,好天线可以使电台的有效辐射功率成倍甚至几倍增加。根据通信距离、方向(定向或全向)、承受功率的不同,短波天线品种有多种选择,大多数人通常使用宽带双极天线,如宽带偶极子天线、笼形天线。普通宽带双极天线具有结构简单,造价便宜,架设方便,不用天调,不接地线,频率范围宽等优点,但存在辐射效率低,通信效果差,质量粗糙,架设状态不稳等问题。

三线式天线采用独特的三线偶极结构,损耗小,辐射效率高,全频带内保持低驻波比,克服了普通宽带双极天线重心偏斜、随风摇摆、易损坏的缺点,保证通信效果的稳定,适应于不同用途。三线式短波基站天线具有平拉和倒-V.两种架设方式。实践证明:原来配用宽带双极天线的台站,换用三线天线后信号等级显著提升。

1天线结构

图1给出了水平架设三线式短波基站天线平面结构示意图。天线结构类似于折合振子,两臂分别由两条平行振子组成,在l/2处折合成一根振子,折回后在中心处加载R。振子总长度l=30m,宽度w=1.5m,边缘宽度l1=1.5m,中心架高15m

图1水平架设三线式短波基站天线结构示意图

通常双极天线采用平衡馈电,接收设备采用508同轴电缆,因此使用平衡-不平衡变换器馈电,变换器比值确定方法借鉴常用半波折合振子输入阻抗确定方法[1],经分析为1B6。为了兼顾低频段驻波特性,在三线天线折合振子末端加载电阻R,通过仿真分析R =3008可在整个频带内获得较好的驻波特性[2]。

图2给出了呈倒V架设的三线式短波基站天线结构示意图。天线呈倒V形架设,振子中央部位悬挂于支撑杆顶端,两边斜向拉直,振子对地夹角约55b。中心架高15m,两侧间距18m,两侧架高2m。天线的平衡馈电方式及中间折合振子加载电阻R同水平架设时一致。

79

第30卷第2期2008年2月现代雷达

M ode rn R adar

Vo.l30No.2

F ebruary2008

*收稿日期:2007211222修订日期:2008201220

图2 倒V 架设三线式短波基站天线结构示意图

2 天线性能分析

2.1 1:6平衡-不平衡阻抗变换器

图3给出了1:6平衡-不平衡阻抗变换器等效电

路示意图。图中虚线部分为双绞线环绕铁氧体磁芯构造的1:4阻抗变换器,5-6段为获得1:6比值而紧绕在1:4变换器双绞线上的短三线,

长度l 3=l @

R L /R s -2,l 为加第3根导线前双线传输线的长度,R L 为负载阻抗,R s 为信号源内阻。

图3 1:6平衡

-不平衡阻抗变换器等效电路图

图4给出了该变换器接上3008电阻后输入端

VS WR 的实测曲线图。从图中可以看出,该变换器在整个2M H z~30M H z 频带范围内电压驻波比小于1.4,达到了比较好的驻波效果。

图4 1:6平衡-不平衡阻抗变换器VS WR 实测曲线图

2.2 三线天线驻波特性分析利用CST M icro wave Studio 软件对三线式短波基站天线进行了仿真分析,并对图1所示水平架设的三线天线进行了实际制作、架设和测试。图5给出了该天线的VS WR 仿真结果和实测结果的比较图。通过

比较发现,三线式短波基站天线VS WR 的仿真结果与

实测结果显示了很好的一致性,在整个工作频带内VS WR 小于2.0。在低频段VS WR 的实测结果要稍大,这主要是由于在低频段阻抗变换器的VS WR 稍大的缘故。

图5 三线天线VS WR 仿真结果与实测结果

2.3 三线天线辐射特性分析

短波天线方向图实际测试很困难,因此利用CST M icr owave Studio 对天线方向图进行了仿真分析。图6、图7分别给出了在10M H z 下水平架设与倒V 架设的三线式短波基站天线方向图。

图6 水平架设三线短波基站天线方向图

图6a 为水平架设天线的yo 面方向图天线在45b 俯仰方向获得最大辐射;图6b 为H =45b 的xoy 面方向图,天线宽边辐射明显强于窄边辐射。因此水平架设

三线短波基站天线主要用于点对点定向通信,或点对扇面的通信。

图7a 、图7b 分别为倒V 架设天线的yoz 面方向图和H =30b 的xoy 面方向图。图中三线天线在倒V 架设情况下,天线在较低频段将产生高仰角辐射方向图,并且呈360b 全向辐射,适合于近距离(覆盖盲区)通信,中远距离通信效果比较好。在高频段其垂直面内方向图有副瓣产生,但水平面内仍保持360b 全向辐射,因此倒V 架设的三线天线可以作为通信网的中心基站天线。

通过仿真分析,三线天线在整个短波频带范围内能够保持3dB i~5dBi 增益,略高于普通的宽带双极天线。

(下转第84页)

机械耦合等方面的问题,因此,在系统设计时,必须要

对以上问题兼顾分析,优化系统性能。

4 结束语

(1)选用非大气窗口毫米波雷达既能降低敌方的拦截概率,也减少了友方战场部署的多元通道干扰,具有十分重要的意义。

(2)微波毫米波单片集成电路技术的最新发展,使故态收发模块在探测系统中的应用达到了实用阶段,从而可以大大提高固态收发模块的技术性能,使成品的一致性好,尺寸小,重量轻。

(3)利用M M I C 技术设计的非大气窗口微小型探测系统,顺应了探测系统小型化的发展趋势,具有体积小、重量轻、费用低以及保密性和抗干扰性强的特点,在保密通信和近程探测中具有重要的实用价值。

参 考 文 献

[1] 朱 丽,娄国伟,李兴国,等.55G H z 毫米波传播特性

及应用[C]//全国微波毫米波会议,成都:中国电子学会,2001.[2]

Ihara T ,Fu ji m ura K .R esearch and deve lo p m ent trends of m illi m ete r 2wave short range appli catio n syste m s[J].IEICE

Trans .Co mmun ,1996,16(12):1741-1753.

[3] Cam iade M,Do m nesque D ,A lleaume P F.Fu lly MM I C

m illi m e ter 2wave front 2end for a 76.5GH z adaptati ve cru i se co ntrol car radar [J].I EEE MTT 2S digest ,1999,7(6):

1489-1492.

[4] W illi am H.H aydlM N ,Ludge r V ,et a.l S i ngle 2ch i p cop l a 2

nar 94G H z F MC W radar sensors[J].IEEE m icro wave and g u i ded wave letters ,1999,9(2):73-75.

[5] 李兴国.毫米波近感技术及其应用[M ].北京:国防工业

出版社,1991.

[6] W e lthof A,Si w er i s H J ,T i scher H,e t a.l A 38/76G H z

auto moti ve radar chi p set fabricated by a l o w cost PHE MT technolo gy [J ].

IEEE MTT 2S Int m icro wave sy m p dig ,

2002,19(2):1855.

[7] Be li nda P ,Ken jiro N .A co m pac t and lo w 2phase noise Ka 2

band PHE MT 2based VCO [J].IEEE T ransacti ons o n m icro 2wave theory and techn i ques ,2003,51(3):778.

[8] 程知群,车延锋,孙晓玮.K a 波段PHE MT M I M IC VCO

设计[J].稀有金属,2004,28(3):473-475.[9] Kun i hiko S ,

J unshi U ,Kazuo k iM,e t a.l InP MM I C s For

V 2band FMC W radar [J ].I EEE MTT 2S d i gest ,1997,9

(2):937-940.

张俊峰 男,1979年生,博士生。研究方向为毫米波近感技术及微小型探测系统。

(上接第80页

)图7 倒V 架设三线短波基站天线方向图

3 结束语

本文提出了一种新型三线式宽频带短波基站天线的设计过程,详细给出了天线呈水平架设和倒V 架设的设计参数。对天线的电压驻波比进行了仿真分析和实际测试,显示了很好的一致性。利用CS T M icro wave St u dio 对天线两种架设方式的方向图进行了仿真分

析:平拉架设三线天线主要向宽边方向辐射,用于点对点定向通信,或点对扇面的通信;倒V 架设三线天线

产生360b 全向辐射,在较低频段能够产生高仰角辐射,同时兼顾近、中、远各种距离全向通信,因此能够胜任通信网的中心站天线。

作为一种短波基站天线,三线天线相比于传统的宽带双极天线显示了独特的优势,值得短波通信工作者借鉴。

参 考 文 献

[1] 林昌禄.天线工程手册[M ].北京:电子工业出版社,

2002.

[2] 蔡英仪.短波天线工程建设与维护[M ].北京:解放军出

版社,2003.

屠 振 男,1979年生,解放军信息工程大学信息工程学院通信工程系助教。研究方向为天线新技术。

短波倒V天线单边振子长度数据及计算方式

倒V天线单边振子长度数据及计算方式如下: 老业余无线电家们常说:有一部好电台,不如有架好天线。有短波电台的朋友都想有架八木天线,但制作或购买以及架设都有一定的负担。有短波的朋友常常为架设天线而犯愁,其实并不难。架设一架倒V天线取材容易、制作简单、架设也方便,两个人就可以架设调试成功。 1/4波长水平、倒V天线长度的计算公式:光速/频率/4*95%=(单臂)长度 21.400MHz天线的计算长度300000/21.4/4*95%=3330mm 14.270MHz天线的计算长度300000/14.27/4*95%=4993mm 7.05MHz天线的计算长度300000/7.05/4*95%=10107mm 29.60MHz天线的计算长度300000/29.60/4*95%=2667mm 以上仅仅是按照公式计算所得的长度,每个波段的天线最好是预长300mm左右,固定好位置后,用驻波表监测着逐步裁剪到最理想驻波的长度。或者使用发信机结合驻波表,监测每对振子的谐振频率(驻波低于1.2的频点),边测边剪(随着谐振频率的升高,振子也在缩短,直到达到您所要的中心频点都低于等于1.2即可)。 例如:假设我们的目标频率是21.400MHz上述天线SWR最小值时候的频率读数是19.896MHz。 读数差=21.400MHz-19.896MHz=1.504MHz=1504KHz

计算得知15米波段每KHz对应修剪长度为0.025cm: 15米波段半波振子总修剪值=1504X0.025=37.6(cm) 振子两边对称剪去37.6/2=18.8(cm) 修剪振子要留有余地,差别越小越要细心,防止修剪过多。还要注意测试人员尽量远离天线振子,或站在偶极天线中间馈电点附近测试,减少人体干扰。另外,使用天线测试仪时,可以指示天线振子谐振时的阻抗,不断调整天线的夹角和高度可以改变阻抗,尽量调整阻抗接近50欧姆即可。 水平偶极天线角度与阻抗的关系如下: 水平偶极天线给电部角度为180度时的阻抗是73欧姆;从180度角度开始变窄,它的阻抗也会随之渐渐地下降。150度时是68欧姆,120度时是58欧姆,105时刚好是50欧姆,更窄的角度90度时是42欧姆,60度时刚降列23欧姆。 使用天线测试仪时,可以指示天线振子谐振时的阻抗,不断调整天线的夹角和高度可以改变阻抗,尽量调整阻抗接近50欧姆即可。 补充:直接将各波段并联比采用振子串陷波器的方法简单。

一种宽频带微带天线的设计

一种宽频带微带天线的设计Ξ  徐 勤 ΞΞ (南京船舶雷达研究所,江苏南京210003) 摘 要:介绍了宽频带渐变式微带缝隙天线的工作原理、设计参数及其对电性能的影响,设计了一种结构简单的天线形式,给出了该天线工作于S、C频段的结构尺寸以及VSWR、辐射方向图的仿真和测试数据曲线,两者之间有很好的一致性,并对影响天线性能的关键参数进行了误差计算。结果表明:在加工精度可达到的范围内,对天线性能的影响不大。该天线可应用于宽频带单极化、双极化阵列天线单元或反射面天线馈源。 关键词:雷微带天线;宽频带;馈源;阵列单元 中图分类号:TN822.8 文献标识码:A 文章编号:100920401(2004)022******* A design of broadband microstrip antenna X U Qi n (N anji ng M ari ne Radar Instit ute,CS IC,N anj ng210003,Chi na) Abstract:The operating principle and designing parameters of the broadband microstrip slot antenna and its influence to the electrical property are proposed in this paper.A simple form of antenna is de2 signed.The scantling of structure,VSWR,the simulation of the radiation pattern and testing data curve of the antenna operating on S and C bands with a consistency between them.An error calcu2 lating to the key parameter influencing the antenna performance is carried through.The results show that the accessible machining precision range will take little influence on the antenna perfor2 mance.The antenna is applicable to the array antenna element with broadband single polarization and dual polarization or antenna feed source with reflecting surface. K ey w ords:microstrip antenna;broadband;feed source;array element 1 引 言 通常,天线工作的最高频率与最低频率之比大于2,就属于宽频带天线;两者之比大于10,则被认为是超宽频带天线。超宽频带天线的设计是未来天线设计的发展方向之一。本文设计的宽频带渐变式微带缝隙天线,最早的形式是由P.J.G ibson、Prasad和Mahapa2 tra在1979年几乎同时提出的,它由一段一端很窄另一端按指数式、V型张开或常数未张开的槽线构成,一般分别称其为Vivaldi天线、L TSA天线或CWSA天线。通常采用双面敷铜介质基片制造,微带线印刷在介质基片的一面作为馈电,指数式、V型张开或常数开口的槽线印刷在介质基片的反面,其作用相当于微带馈电线与自由空间之间的阻抗变换网络。槽线的窄端区域决定了高频端的辐射,而张开的口径区域则决定了低频端的辐射。虽然它们的结构形式不完全相同,但工作原理及辐射的本质是一样的,如图1所示,为其典型的结构示意图。 该类天线的辐射情况与微带贴片、微带振子等不同,它属于端射式行波天线,依赖的是表面波传输,至端口辐射。由于表面波的相速一般低于光速,故渐变式微带缝隙天线属于一种慢波结构。对于沿传输路径表面波相速不变的行波天线,存在一个最佳的相速比,它能导致天线获得最大的方向性和更高的增益。但该类天线由于缝隙的渐变式张开,其传输相速是变化的,从而方向性降低,副瓣电平也降低。在与介质基片平 Ξ Ξ Ξ作者简介:徐勤(1962-),男,江西临川人,南京船舶雷达研究所高级工程师,从事舰戴雷达天线设计。 收稿日期:2004201212

几种短波天线的比较

几种短波天线的比较(ZT) 这里我们是常见的几款短波天线,如国产的10米波段1/2波长垂直天线,曰本钻石公司的HV-4,自制的加感天线,自制的DP天线。当然,还很多的其他的天线类型。这次只是对这几款用过的做一个比较,讲一讲个人的一些体会,希望能大家有所帮助。还是会再继续寻找,试图找出更符合个人需要,容易制作和携带的野营天线。 1. 国产的10米波段1/2波长垂直天线: 这种天线好处很多,增益高,发射仰角低,受环境影响小,无须调整,架设高度低,可以直接放在地上。缺点是单波段天线,一个波段得要一根。另外每节1米左右,携带不算很麻烦也不算容易。 2. 曰本钻石公司的HV-4: 这是一款车天线,是适合放在车顶使用的,曾经用吸盘吸在普桑顶上,在行驶的汽车上用15米波段联络曰本电台效果非常好。但是不把它安装在车上,它就无法正常工作,即使加上了模拟地线,谐振点也全部偏低,21MHz波段的谐振点到了18MHz。所以其实是不适合野营使用的。 3. 自制的加感天线: 振子是1.5米长的拉杆天线,收起来的时候很短。加感线圈在底部,另外还需要地线配合。由于当年调试的时候是把天线斜挑出阳台,地线自然下垂的形态。所以今天曾经试图把天线振子竖起来,地线拉水平,或斜向下45度,就都无法谐振。只有摆成当年调试的样子,才能谐振。回想以前玩野外操作的时候,这类天线的加感线圈都是做很多抽头出来,到地方再重新找抽头位置。看来这天线也必须这样做才成,它太受环境的影响。这种天线携带还算容易,不过振子短,有效辐射长度短,效率不会很高。但是也不算太差。 阻抗匹配概念 阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。大体上,阻抗匹配有两种,一种是透过改变阻抗力(lumped-circuit matching),另一种则是调整传输线的波长(transmission line matching)。要匹配一组线路,首先把负载点的阻抗值,除以传输线的特性阻抗值来归一化,然后把数值划在史密夫图表上。改变阻抗力把电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿著代表实数电阻的圆圈走动。如果把电容或电感接地,首先图表上的点会以图中心旋转180度,然后才沿电阻圈走动,再沿中心旋转180度。 重覆以上方法直至电阻值变成1,即可直接把阻抗力变为零完成匹配。调整传输线由负载点至来源点加长传输线,在图表上的圆点会沿著图中心以逆时针方向走动,直至走到电阻值为1的圆圈上,即可加电容或电感把阻抗力调整为零,完成匹配阻抗匹配则传输功率大,对于一个电源来讲,单它的内阻等于负载时,输出功率最大,此时阻抗匹配。最大功率传输定理,如果是高频的话,就是无反射波。对于普通的宽频放大器,输出阻抗50Ω,功率传输电路中需要考虑阻抗匹配,可是如果信号波长远远大于电缆长度,即缆长可以忽略的话,就无须考虑阻抗匹配了。 阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生

天线的分类与选择

第二讲天线的分类与选择 移动通信天线的技术发展很快,最初中国主要使用普通的定向和全向型移动天线,后来普遍使用机械天线,现在一些省市的移动网已经开始使用电调天线和双极化移动天线。由于目前移动通信系统中使用的各种天线的使用频率,增益和前后比等指标差别不大,都符合网络指标要求,我们将重点从移动天线下倾角度改变对天线方向图及无线网络的影响方面,对上述几种天线进行分析比较。 2.1 全向天线 全向天线,即在水平方向图上表现为360°都均匀辐射,也就是平常所说的无方向性,在垂直方向图上表现为有一定宽度的波束,一般情况下波瓣宽度越小,增益越大。全向天线在移动通信系统中一般应用与郊县大区制的站型,覆盖范围大。 2.2 定向天线 定向天线,在在水平方向图上表现为一定角度范围辐射,也就是平常所说的有方向性,在垂直方向图上表现为有一定宽度的波束,同全向天线一样,波瓣宽度越小,增益越大。定向天线在移动通信系统中一般应用于城区小区制的站型,覆盖范围小,用户密度大,频率利用率高。 根据组网的要求建立不同类型的基站,而不同类型的基站可根据需要选择不同类型的天线。选择的依据就是上述技术参数。比如全向站就是采用了各个水平方向增益基本相同的全向型天线,而定向站就是采用了水平方向增益有明显变化的定向型天线。一般在市区选择水平波束宽度B为65°的天线,在郊区可选择水平波束宽度B为65°、90°或120°的天线(按照站型配置和当地地理环境而定),而在乡村选择能够实现大范围覆盖的全向天线则是最为经济的。 2.3 机械天线 所谓机械天线,即指使用机械调整下倾角度的移动天线。 机械天线与地面垂直安装好以后,如果因网络优化的要求,需要调整天线背面支架的位置改变天线的倾角来实现。在调整过程中,虽然天线主瓣方向的覆盖距离明显变化,但天线垂直分量和水平分量的幅值不变,所以天线方向图容易变形。 实践证明:机械天线的最佳下倾角度为1°-5°;当下倾角度在5°-10°变化时,其天线方向图稍有变形但变化不大;当下倾角度在10°-15°变化时,其天线方向图变化较大;当机械天线下倾15°后,天线方向图形状改变很大,从没有下倾时的鸭梨形变为纺锤形,这时虽然主瓣方向覆盖距离明显缩短,但是整个天线方向图不是都在本基站扇区内,在相邻基站扇区内也会收到该基站的信号,从而造成严重的系统内干扰。 另外,在日常维护中,如果要调整机械天线下倾角度,整个系统要关机,不能在调整天线倾角的同时进行监测;机械天线调整天线下倾角度非常麻烦,一般需要维护人员爬到天线安放处进行调整;机械天线的下倾角度是通过计算机模拟分析软件计算的理论值,同实际最佳下倾角度有一定的偏差;机械天线调整倾角的步进度数为1°,三阶互调指标为-120dBc。

一种新型的宽频带双极化基站天线_黄聪

参考文献 [1]YD/T 1108-2001. CDMA数字蜂窝移动通信网无线 同步双模(GPS/GLONASS)接收机性能要求及与基站间接口技术规范[S]. [2]YD/T 1030-1999. 800MHz CDMA数字蜂窝移动通信网空中接口技术要求[S]. [3]广嘉电子. 北斗一号授时技术及在电力系统中的应用[J]. 基础电子,2008(5). [4]杜雪涛,李楠,刘杰. 北斗与GPS双授时在TD-SCDMA中的应用[J]. 电信工程技术与标准化, 2007(7). [5]潘巍,常江,张北江. 北斗一号定位系统介绍及其应用分析[J]. 数字通信世界,2009(9). ★ 【作者简介】 陆晓东:硕士毕业于北京邮电大学电信工程学院通信与信息系统专业,现为中国电信股份有限公司北京研究院副主任工程师,长期从事电信行业咨询、3G无线网络规划与优化领域研究。曾发表多篇论文,合著有《CDMA2000无线网络规划优化技术》一书。 【摘 要】文章首先提出了一种适用于基站天线的新型宽频带双极化偶极子天线单元,并利用HFSS对天线单元的电性能进行了仿真。随后,利用该天线单元组成了一个4单元的基站线阵,并对阵列的反射底板和侧板进行了适当的设计与优化,最后也进行了仿真。 【关键词】基站天线 宽频带双极化天线 Г形微带馈线 天线阵列 HFSS 收稿日期:2010-08-13一种新型的宽频带双极化基站天线 黄 聪 薛锋章 华南理工大学电子与信息学院 1 引言 由于无线应用业务的迅速扩展以及手机用户数量的爆发性增长,社会对宽带无线通信的需求也日趋增长。而宽频带基站天线作为宽带无线通信系统一个必不可少 的前端部件,在某些情况下更希望它能够实现极化分集的效果,尤其是在一些先进的无线通信系统当中[1]。 正因为如此,近年来,宽频带、双极化、小型化天线日益受到人们的青睐。正如文献[1]所指出的,宽频带天线也相应地由单极子圆盘天线向宽频带双极化天线演 进。不少文献已提出了一些宽频带天线的设计,例如圆

天线的最佳长度计算

天线的最佳长度计算 一段金属导线中的交变电流能够向空间发射交替变化的感应电场和感应磁场,这就是无线电信号的发射。相反,空间中交变的电磁场在遇到金属导线时又可以感应出交变的电流,这对应了无线信号的接收。 在电台进行发射和接收时都希望导线中的交变电流能够有效的转换成为空间中的电磁波,或空间中的电磁波能够最有效的转换成导线中的交变电流。这就对用于发射和接收的导线有获取最佳转换效率的要求,满足这样要求的用与发射和接收无线电磁波信号的导线称为天线。 理论和实践证明,当天线的长度为无线电信号波长的1/4时,天线的发射和接收转换效率最高。因此,天线的长度将根据所发射和接收信号的频率即波长来决定。只要知道对应发射和接收的中心频率就可以用下面的公式算出对应的无线电信号的波长,再将算出的波长除以4就是对应的最佳天线长度。 频率与波长的换算公式为: 波长=30万公里/频率 =300000000米/频率(得到的单位为米)) 例:求业余无线电台的天线长度 已知业余无线电台使用的信号频率为435MHz附近,其波长为: 波长= 300000公里/435MHz = 300000000/435000000 = 300/435 = 0.69米 对应的最佳天线长度应为 0.69/4 ,等于0.1725米

当频率为439MH时,大家可以将计算公式简化为 波长=300/439 =0.683米 最佳天线长度为0.683米/4,等于0.17米 注意:只要在金属体内有交变的电流,该金属体就要向空间辐射电磁波;反之,只要空间中有一定强度的电磁波信号,就会在该空间中的金属体上感应出交变的电流。天线与一般金属体的不同之处在于,天线强调了将金属体内交变电流最有 天线输入阻抗 天线输入阻抗是天线馈电点处的电压与电流之比。通常是一个复阻抗,而且是频率的函数。 驻波系数(VSWR) 驻波系数是天线馈线上的一个特征参数,它反映了天线输入阻抗与馈线特性阻抗的匹配程度,定义为馈线上最大电压与最小电压之比。 增益G 在天线输入功率相同的情况下,某天线在最大辐射方向的场强平方,与一理想的无方向性的点源在相同处产生的场强平方之比,常用分贝表示。 方向图 天线方向图用来描述电(磁)场强度在空间的分布情况,常用般功率波瓣宽度来表示方向图的宽度。 极化特性 天线极化特性表示天线在最大辐射方向上电场的极化形式。可分为线极化、圆

MG-378C型短波多馈多模宽带天线

MG-378C型短波多馈多模宽带天线 技术说明书 一、概述 MG-378C短波多馈多模宽带天线应用于无线固定通信台站,可与工作频率3-30MHz的各类电台配套使用。该天线由锥形支撑体支撑,4根振子线从上向下依次盘旋,组成具有3付天线效能的天线阵,其特殊的结构设计,使天线具有多馈功能(3路)和多仰角工作模式(2种),可全方向工作,抗极化衰落能力强,收信时噪声电平低,工作频带宽并可免天线调谐。在固定台站作为全向天线和机动性天线使用,也可在天线场区狭小、地形不利的情况下用于天线扩建工程,并可架设于屋顶。该天线电气和机械性能优良,环境适应性强,可在各种恶劣环境条件下正常工作。 二、主要技术指标 1. 输入路数:3路 2. 输入功率:每路≤1.6KW(PEP) 3. 极化方式:椭圆极化 4.辐射方向:水平全向 5. 工作频段:3~30MHz 6. 电压驻波比:≤2.0 (个别频点≤2.2) 7. 路间隔离度:≥20dB (个别频点≥15dB) 8. 增益:7dB

9. 标称阻抗:50Ω 10. 天线占地面积:35m2 11. 工作温度:-45℃~55℃ 12.抗风能力:≤12级 13. 天线重量:780kg(含包装箱) 三、天线结构 本天线由主桅杆、支撑杆、拉线、天线幕、馈电器等构成(见图1和表2)。天线由高12.2m热镀锌钢质单桅杆支撑,辐射体为4付锥形对数螺旋辐射器,呈倒锥形固定在6根各11.2m玻璃钢支撑杆上;4根振子线从第一根开始依次呈对数螺旋盘绕,以邻近倒锥体顶点为低端起点,以邻近倒锥体最高点为终点,相对于锥体中心轴彼此圆周间隔90°。天线的这种结构和设计,使天线可以辐射3种不同模式的仰角波束,其中低仰角波束1个,高仰角波束2个(见下图);而水平方向图则基本呈圆形,可保障在不同距离的全方位宽带短波通信。馈电器由3个阻抗变换器和6个隔离变压器等器件组成,使3付天线进行阻抗变换和相互隔离。天线倒锥体顶点距地面高4.7m,馈电器装在倒锥体顶点下面的塔楼内。

一种超宽频带双圆锥全向天线的设计

一种超宽频带双圆锥全向天线的设计3 汪 漪,徐 勤,吴志峰33 (南京船舶雷达研究所,江苏南京210003) 摘 要:介绍了一种可工作于0.8~16GHz的超宽带双圆锥全向天线的工作原理、设计参数及其对电性能的影响,给出了该天线工作于X波段的具体结构尺寸以及VS WR、辐射方向图的仿真和测试数据曲线,以及此天线在0.8~16GHz范围内的VS WR的测试数据曲线,并提出了一些设计此天线的关键点。结果表明,此天线具有频带宽、全向均匀性好、增益大、结构简单等优点,可广泛应用于高低功率的雷达、通讯中的全向天线。 关键词:雷达;双圆锥全向天线;X波段 中图分类号:T N823.15 文献标识码:A 文章编号:1009-0401(2005)01-0025-03 Design of an ultra2wideband biconical o mni2directi onal antenna WAN G Yi,XU Q ing,WU Zhi2feng (N anjing M arine R ada r Institu te,N an jing210003,China) Abstract:The operating p rinci p le of an ultra2wideband biconical omni2directi onal antenna operating within0.8~16GHz is p resented in this paper.And its design para meters and influence on the electri2 cal p r operties are als o p r oposed.The structural size of the antenna operating at X2band and the si m ula2 ti on and test data curves of the VS WR and the radiati on pattern are p resented.The test data curve of the VS WR of the antenna operating within0.8~16GHz are als o p resented,and s ome key points of an2 tenna design are given.The results show that this antenna possesses the advantages of wide2band,good omni2directi onal unifor m ity,high gain and si m p le structure,and may be widely app lied in the omni2di2 recti onal antennas of high/l ow power radars and communicati ons. Key words:radar;biconical omni2directi onal antenna;X2band 1 引 言 通常,天线工作的最高频率和最低频率之比大于10,则被认为是超宽频带天线。本文介绍的双圆锥天线的最高频率和最低频率之比大于20,是典型的超宽带天线。此天线的结构形式如图1所示。 此天线结构简单,由两个金属圆锥和一根同轴馈线构成。其辐射情况是由振子天线演化而来,圆锥臂可以用金属板围成,也可由金属网构成。前者用于高频,后者用于低频,设计方法有差别。当锥角θ=≥20°时,双圆锥天线的带宽非常宽。它的辐射空间在两个圆锥臂之间,同轴线的内外导体分别接到双圆锥的两个顶点,即可激励最低模式TE M波。 也可以用圆波 图1 超宽带双锥全向天线典型结构 导E 01 模激励,不过其辐射的是水平极化波。这种喇叭无论工作在垂直极化还是水平极化波,其水平面都是全方向性的;在垂直面,则可按照对应极化的喇叭方向图尺寸计算,波瓣宽度与锥角和斜长有关。这种形式 52 雷达与对抗 2005年 第1期 3 33收稿日期:200421128 作者简介:汪漪(1979-),男,安徽芜湖人,南京船舶雷达研究所助理工程师,现从事雷达天线研发工作。

短波天线尺寸计算

短波天线尺寸计算 计算方法: 用电磁波的速度(光速)30万公里除以频率等于该频率的波长,再除以4就是波长为单边振子长度,再去93--97%的缩短率: 比如: 频率 7.05兆的单边振子xx为: 10.64米,加上 0.3米作为修剪余量;l* p" u;[6 q!L/p7B5s: }6频率 14.22兆的单边振子xx为: 5.3米,加上 0.3米的修剪余量; 频率 21.26兆的单边振子xx为: 3.53米,加上 0.2米的修剪余量即可;再用天线测试仪测定每对振子的谐振频率,开始频率低,慢慢修剪到相应谐振频率为止。 主干高度如果在8米,阻抗应该差不多50欧姆,驻波会低于 1.3。 倒V天线单边振子长度数据及计算方式如下:

水平、倒V天线计算公式 /4波长水平、倒V天线xx的计算公式: 光速/频率/4*95%=(单臂)xx 21.400MHz天线的计算长度3000/ 21.*95%=3330mm 14.270MHz天线的计算长度3000/ 14.*95%=4993mm 7.05MHz天线的计算长度3000/ 7.*95%=107mm 29.60MHz天线的计算长度3000/ 29.*95%=2667mm 以上仅仅是按照公式计算所得的长度,每个波段的天线最好是预长300mm 左右,固定好位置后,用驻波表监测着逐步裁剪到最理想驻波的长度。 或者使用发信机结合驻波表,监测每对振子的谐振频率(驻波低于 1.2的频点),边测边剪(随着谐振频率的升高,振子也在缩短,直到达到您所要的中心频点都低于等于 1.2即可)。 例如: 假设我们的目标频率是 21.400MHz上述天线SWR最小值时候的频率读数是 19.896MHz。

超宽频微带天线设计

Ultra-Wideband Microstripe Antenna Design 陳建宏 Chien-Hung Chen 摘要 近十年來由於微帶天線具有體積小、重量輕、製作容易、價格低廉、可信度高,同時可附著於任何物體之表面上的特性,在無線通訊的應用上扮演著重要的角色。本文將利用全平面正方形單極微帶天線當作設計天線的原型,藉由調整金屬貼片的上緣、下緣部份與接地面的上緣部份來研製適用於超寬頻通訊系統的微帶天線。由模擬與實驗結果比較得知,可以發現其響應非常吻合,是一個適用於超寬頻通訊產品的天線。 關鍵詞:微帶天線、單極、超寬頻

、簡介 美國聯邦通信委員會(Federal Communication Commission,FCC)在西元2002年2月14日允許超寬頻技術使用於消費性電子產品上,並公佈了初步規格,FCC開放3.1GHz~10.6GHz提供超寬頻通信及測試使用。為了研究開發適用於此頻段的天線技術。將利用微帶天線的優點:體積小、重量輕、低成本、容易製作等特性,來研製適用於超寬頻通訊系統的微帶天線。 傳統的寬頻天線[2]中有行進波線天線(Traveling-Wave Wire Antenna)、螺旋形天線(Helical Antenna)、偶極圓錐形天線(Biconical Antenna)、單極圓錐形天線(Monoconical Antenna)、盤錐形天線(Discone Antenna)、袖子形天線(Sleeve Antenna)、渦狀天線(Spiral Antenna)和對數週期天線(Log-Periodic Antenna),不過其中適用於超寬頻系統的只有偶極圓錐形天線、單極圓錐形天線和盤錐形天線[3]。因為其不僅有大的輸入阻抗頻寬(Large Input Impedance Bandwidth)、其輻射場形(Radiation Pattern)也能控制在一定的頻寬中。 利用虛像法(Method of Image)[4]及接地面(Ground Plane)來使偶極天線變成單極天線,從早期的線型單極天線-窄頻(Narrowband),演化成單極圓錐形天線-中頻寬(Intermediate

应用于WLAN的宽频带天线设计

应用于WLAN的宽频带天线设计

摘要:为了设计出可以覆盖无线局域网WLAN的2.4GHz,5.2GHz,5.8GHz三个频带的天线,采用一种结构简单的宽带双频共面波导馈电的单极子天线。该天线由一个平面倒L形和一个倒U形贴片连接构成,实际加工制作了一个天线并且实测了S11参数,结果表明该天线具有两个独立的谐振模式,并且在应用范围内具有良好的阻抗匹配特性。 引言 无线局域网WLAN(Wireless Local Area Network)是利用无线技术实现快速接入以太网,是无线通信技术与计算机网络相结合的产物,是对有线局域网的一种补充和扩展。和有线网络相比,WLAN具有可移动性、灵活性、更迅速、费用低、网络可靠性高等优势。近年来,随着IEEE 802.11a(5.15~5.35GHz,5.725~5.825GHz)和IEEE 802.11b/g(2.4~2.483 5GHz)标准的提出,WLAN得到了迅猛发展.与此同时对WLAN天线的要求也越来越高,要求其体积小、重量轻、生产加工便捷、天线成本低廉,同时在功能上要求使用频宽较宽以及有双频性能以同时达到IEEE 802.11a/b/g标准要求。所以,近年来对小型化的多频段WLAN天线的研究大量涌现。 在平面单极子天线中,有一种倒L形平面单极子天线,国际上已经对此进行了研究,在理论模拟仿真上,可以同时满足IEEE802.11a/b/g标准要求,其设计形式更简单,在满足带宽的要求上,体积还可进一步的缩小。所以,本文将在原来的微带馈电的倒L平面单极子天线的基础上,改变其馈电的形式,研制出一种共面波导馈电的倒L-U平面单极子天线。仿真和实测表明该天线在WLAN的三个频带范围内均具有很好的阻抗匹配和辐射特性。 1 倒L-U平面单极子天线的设计 1.1 天线分析与设计 WLAN天线形式有很多种,比如微带天线,八木天线、平面单极子天线等等。选择平面单极子天线的原因是,相对于微带天线,其带宽大;相对于八木天线,其体积小且容易共形。平面单极子天线与微带天线的结构不同在于:在金属辐射贴片对应的介质衬底另一侧的金属地板被去除,也就是采用了部分地板结构。微带天线的带宽低,因为其Q值大,即在辐射板与地板之间储存了大量的能量。平面单极子天线的辐射板的对应地板去除了,加大了辐射电阻,辐射出去的能量也大大的增加,Q值变小,带宽增大。选择共面波导馈电的形式,将地板与辐射板共面,使得带宽又增大了,而且结构更紧凑。但是由于天线与共面波导之间缺少有效的隔离,造成天线性能受共面波导尺寸的影响较严重。

一种宽带短波环形天线的设计

一种宽带短波环形天线的设计 Design of a Broadband HF Loop Antenna 目录 中文摘要、关键词 (Ⅰ) 英文摘要、关键词 (Ⅱ) 引言 (1) 第一章课题研究的背景及意义 (2) 1.1 宽带短波环形天线的研究背景 (2) 1.2 课题研究的意义 (2) 1.2.1 短波通信 (2) 1.2.2 短波天线 (4) 1.2.3 车载宽带短波NVIS半环鞭天线的意义 (5) 第二章环形天线的宽带化和集总加载技术 (7) 2.1 环形天线 (7) 2.1.1天线的电性能指标 (7) 2.1.2环形天线的概念 (9) 2.2 宽带天线的概念及实现 (9) 2.2.1 天线的工作带宽及限制带宽的主要因素 (9) 2.2.2 实现线天线宽带化的主要方法 (10) 2.3 集总加载对小环天线性能的影响 (11) 第三章宽带短波环形天线的优化设计方法 (15) 3.1宽带短波NVIS半环鞭天线的设计 (15) 3.1.1 天线模型 (15) 3.1.2宽带短波NVIS半环鞭天线的原理 (16)

3.1.3 宽带短波NVIS半环鞭天线设计方案 (16) 3.1.4天调系统 (18) 3.2 矩量法 (18) 3.2.1矩量法基本原理 (19) 3.2.2 矩量法方程的求解 (21) 3.3遗传算法在线天线优化设计中的应用 (22) 3.3.1遗传算法原理 (22) 3.3.2遗传算法在天线加载问题中的应用 (23) 3.4 宽带短波NVIS半环鞭天线的设计结果及分析 (25) 第四章基于CST的宽带短波NVIS半环鞭天线优化设计 (27) 4.1宽带短波NVIS半环鞭天线的CST优化设计 (27) 4.1.1 CST概述 (27) 4.1.2 使用CST优化天线性能参数的主要过程 (28) 4.2 短波环天线主要性能参数的CST仿真及结果分析 (29) 4.2.1天线输入阻抗的CST仿真及结果分析 (29) 4.2.2天线方向图的CST仿真及结果分析 (33) 4.3结果分析及改进方案 (41) 结论 (43) 致谢 (44) 参考文献 (45) 附录 (46)

小型高效短波天线M-409

小型高效短波天线M-409的调试与使用 M-409天线是BD8ABM于2005年4月9日一次试架成功的。因通联效果好,很多HAM要求公开数据和出套件,经过BD8ABM 一个月的试用和野外架设,感觉性能和W-8010一样,效率与1/2波长五段倒V无明显差别,因此向大家郑重推荐。一年多来,这款适合DIY的五波段短波天线,因可以水平、倒V架设,占地面积小、效率高,受到全国各地HAM的喜爱。在天线的调试和使用过程中,各地的HAM就该天线的使用环境及灵活组合等与BD8ABM进行了广泛地探讨和研究。 为了使更多的HAM方便地了解和掌握409天线的使用,经征得BD8ABM的同意,本人把一年来各地HAM在网上关于该天线的调试方法及使用技巧等内容的帖子整理成文件免费供大家下载参考学习。(加粗字体为BD8ABM的回帖) 祝各位通联愉快! 73! M-409缩短五波段短波天线数据 1. 线圈参数 频率 线圈直径(毫米) 线圈圈数(匝) 3.5MHZ 40 毫米 73匝 7MHZ 40 毫米 19匝 14MHZ 40 毫米 13匝 2. 振子线参数 振子线编号 长度(毫米) 数量(根) 振子线A 3760 毫米 2根 振子线B 4230 毫米 2根 振子线C 2820 毫米 2根 振子线D 2830 毫米 2根 振子线E 1410 毫米 2根 调整用线须 410 毫米 6根 3. BALUN 磁环 30*6*16mm 线径1.0mm 3根绞合绕6~8圈 注:以上数据经用150W/FM连续工作30分钟试验,BALUN微热,工作正常。 *因改进而有所变化,恕不另行通知。 M-409天线陷波线圈使用说明 天线各部见图1 建议您采用外径4毫米的多芯铜导线做振子,各段的长度为A段3.76米2根, B段4.23米2根, C段2.82米2根, D 段2.83米2根, E段1.41米2根, 另外再用6根外径4毫米长度为0.4米的多芯铜导做调整线须;振子线A .B. D两端都要用冷压接线端头与BALUN. 线圈连接,C. E一端用冷压接线端头与线圈连接,另一端与绝缘子连接(留出0.4米做调整线须)见图2

天线基本参数说明

天线有五个基本参数:方向性系数、天线效率、增益系数、辐射电阻和天线有效高度。这些参数是衡量天线质量好坏的重要指标。 【天线的方向性】是指天线向一定方向辐射电磁波的能力。它的这种能力可采用方向图,方向图主瓣的宽度,方向性系数等参数进行描述。所以方向性是衡量天线优劣的重要因素之一。天线有了方向性,就能在某种程度上相当于提高发射机或接收机的效率,并使之具有一定的性和抗干扰性。 【方向性图】方向性图是表示天线方向性的特性曲线,即天线在各个方向上所具有的发射或接收电磁波能力的图形。 实用天线处在三度几何空间中,所以,它的方向性图应该是个立体图。在这个立体图中,由于所取的截面不同而有不同的方向性图。最常用的是水平面的方向性图(即和平行的平面的方向性图)和垂直面的方向性图(即垂直于的平面的方向性图)。有的专业书籍上也称赤道面方向性图或子午面方向性图。 【波瓣宽度】有时也称波束宽度。系指方向性图的主瓣宽度。一般是指半功率波瓣宽度。当 L/λ数值不同时,其波瓣宽度也不同。L/λ比值增加时,方向图越尖锐,但当(L/λ)>0.5时,除了与振子轴垂直的方向有最大的主瓣外,还可能出现付瓣。因此,波瓣宽度越小,其方向性越强,性也强,干扰邻台的可能性小。所以,对于超短波,微波等所用的天线,登记主瓣宽度这一指标,是十分重要的。

【方向性系数】方向性系数是用来表示天线向某一个方向集中辐射电磁波程度(即方向性图的尖锐程度)的一个参数。为了确定定向天线的方向性系数,通常以理想的非定向天线作为比较的标准。 任一定向天线的方向性系数是指在接收点产生相等电场强度的条件下,非定向天线的总辐射功率对该定向天线的总辐射功率之比。 按照上面的定义,由于定向天线在各个方向上的辐射强度不等,故天线的方向性系数也随着观察点的位置而不同,在辐射电场最大的方向,方向性系数也最大。通常如果不特别指出,就以最大辐射方向的方向性系数作为定向天线的方向性系数。 在中波和短波波段,方向性系数约为几到几十;在米波围,约为几十到几百;而在厘米波波段,则可高达几千,甚至几万。 【辐射电阻】发射天线的辐射功率与馈电点的有效电流平方之比,称为天线的辐射电阻。 辐射电阻是一个等效电阻,如果用它来代替天线,就能消耗天线实际辐射的功率。因此,采用辐射电阻这个概念,可以简化天线的有关计算。 辐射电阻的大小取决于天线的尺寸、形状以及馈电电流的波长。因为发射天线的任务是辐射电磁波,所以在装置天线时总是适当地选择其尺寸和形状,使辐射电阻尽可能大一些。

各种天线参数和分类

汽车天线 汽车天线又叫车载天线,一般汽车上的天线用于车上的收音机和电台,可分汽车内置天线和外置天线。但根据不同用途的汽车也有安装其他的天线。如公交车有DVB-T天线,车载TV天线。物流及出租车还装有GSM天线、GPS卫星天线。收音机和电台天线主要就是AM/FM天线、软PCB数字天线、AM/FM/TV天线等。根据不同的功能和用途,所用的天线的频率也不同。 目录 名词释义: 又叫车载天线,是指设计安装在车辆上的移动通讯天线。最常见就是吸盘天线。由于吸盘天线安装摆放容易,所以在一些简易设台场合常常用吸盘天线代替基地天线。 结构分类: 车载天线结构上有缩短型、四分之一波长、中部加感型、八分之五波长、双二分之一波长等形式的天线,理论上它们的效率依次增加,同样工作频段的天线的长度也依次增加。 缩短型: 由于车辆本身有限高,加上过长的天线在车辆高速行进时形成的风阻,过桥洞、进入地下车库都是问题,所以车载天线并不是越长越好,一般要求轿车天线不超过70厘米,面包车类要求天线更短。缩短型天线体积小巧,虽然增益不高,但适合使用于需要隐蔽天线的场合。 八分之五波长和中部加感型

一般的警用车辆建议安装高增天线,尤其是在活动区域范围比较大的车辆,350MHZ高增益天线多分为八分之五波长加感的形式,在距天线顶部二分之一波长距离处有一个加感线圈。400MHZ频段双二分之一波长天线具有较高的增益,它的外观特征是天线的振子上有两个加感线圈。八分之五波长和中部加感型也有较高的增益,且价格比较便宜,因此得到广泛的使用。在作为临时固定台天线使用的场合可以考虑选用增益高的吸盘天线,天线的长度不必有过多限制。由于吸盘天线是根据汽车使用环境而设计所以在作为固定使用时在其下吸一块半径大于1米的金属板(如铁皮)会有更好的使用效果。由于进口原装的车载天线价格非常昂贵且优势不突出,所以一般都选用国产车载天线。在天线选型阶段主要参考天线的外型和增益。建议选用大厂家的名牌产品,他们提供的参数真实性比较高,制造工艺也有保证。如果是批量采购完全可以到专业天线制造厂家按使用频段定制,以取得最佳的使用效果。 汽车天线(8张) 频率分类: GSM天线 1. 工作频率:900MHZ/1800MHZ 900MHZ增益:3dBi 1800MHZ 增益:3dBi 2. VSWR:GSM〈1.8 DCS 〈1.8 3.线长:RG174线,3米/5米 4.安装方式:磁铁吸附 5.适用接头:SMA/SMB/GT5/BNC/MCX/MMCX 6.工作温度:-20℃~+85℃ 7.贮藏温度:-40℃~+90℃ TV天线 1.电源电压DC 10.5∽16.5V 2.电源60∽100MA 3.工作频率48∽860MHZ 4.增益15±3DB 5.噪声系数≤7DB 6.输出阻抗 75Ω 7.输出驻波≤3 8.环境温度 -20℃∽+70℃

天线的最佳长度及计算方法1

天線的最佳長度及計算方法 一段金屬導線中的交變電流能夠向空間發射交替變化的感應電場和感應磁場,這就是無線電信號的發射。相反,空間中交變的電磁場在遇到金屬導線時又可以感應出交變的電流,這對應了無線信號的接收。 在電臺進行發射和接收時都希望導線中的交變電流能夠有效的轉換成為空間中的電磁波,或空間中的電磁波能夠最有效的轉換成導線中的交變電流。這就對用於發射和接收的導線有獲取最佳轉換效率的要求,滿足這樣要求的用與發射和接收無線電磁波信號的導線稱為天線。 理論和實踐證明,當天線的長度為無線電信號波長的1/4時,天線的發射和接收轉換效率最高。因此,天線的長度將根據所發射和接收信號的頻率即波長來決定。只要知道對應發射和接收的中心頻率就可以用下面的公式算出對應的無線電信號的波長,再將算出的波長除以4就是對應的最佳天線長度。 頻率與波長的換算公式為:

波長=30萬公里/頻率 =300000000米/頻率(得到的單位為米)) 例:求業餘無線電臺的天線長度 已知業餘無線電臺使用的信號頻率為435MHz附近,其波長為: 波長= 300000公里/435MHz = 300000000/435000000 = 300/435 = 0.69米 對應的最佳天線長度應為 0.69/4 ,等於0.1725米 當頻率為439MH時,大家可以將計算公式簡化為 波長=300/439 =0.683米 最佳天線長度為0.683米/4,等於0.17米 注意:只要在金屬體內有交變的電流,該金屬體就要向空間輻射電磁波;反之,只要空間中有一定強度的電磁波信號,就會在該空間中的金屬體上感應出交變的電流。天線與一般金屬體的不同之處在於,天線強調了將金屬體內交變電流最有 天線輸入阻抗 天線輸入阻抗是天線饋電點處的電壓與電流之比。通常是一個複阻

天线发展简史

天线发展简史 天线是无线电通信、无线电广播、无线电导航、雷达、遥测遥控等各种无线电系统中不可缺少的设备。从天线发明至今经历了100多年的时间。纵观天线的发展,其大致可分为三个历史阶段。 第一阶段:线天线时期(19世纪末至20世纪30年代初) 第一个天线是德国物理学家在1887年为验证英国数学家及物理学家麦克斯韦预言的电磁波而设计的。其发射天线是两根30cm 长的金属杆,杆的终端连接两块40cm见方的金属板,采用火花放电激励电磁波,接收天线是环天线。此外,1888年赫兹还用锌片制作了一个抛物柱面反射器天线,它由沿着焦线放置的振子馈电,工作在455MHz。 1901年,意大利发明家马可尼(1874-1937)采用一种大型天线实现了远洋通信,其发射天线为50根下垂铜线组成的扇形结构,顶部用水平横线连在一起,横线挂在两个高150英尺,相距200英尺的塔上,电火花放电式发射机接在天线和地之间。这可认为是付诸实用的第一副单极天线。 早期无线电的主要应用是长波远洋通信,因此天线的发展也主要集中在长波波段上。自1925年以后,中、短波无线电广播和通信开始实际应用,各种中、短波天线得到迅速发展。 第二阶段:面天线时期(20世纪30年代初至50年代末) 二战前夕,微波速调管和磁控管的发明,导致了微波雷达的出现,厘米波得以普及,无线电频谱才得到更为充分的利用。这一时期广泛采用了抛物面天线或其他形式的反射面天线,这些天线都是面天线或称口径天线。此外,还出现了波导缝隙天线、介质棒天线、螺旋天线等。1940年后有关长、中、短波线状天线的理论基本成熟,主要的天线形式沿用至今。第二次世界大战中,雷达的应用促进了微波天线特别是反射面天线的发展,微波中继通信、散射通信、电视广播的迅速发展,使面天线和线天线技术进一步得到发展、提高。这时期建立了口径天线和基本理论,如几何光学、口径场法等,发明了天线测试技术,开发了天线阵的综合技术。

相关文档
最新文档