第六章 大肠杆菌基因工程[可修改版ppt]
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ori
筛选Apr、Tcs的转化子
核糖体结合位点
外源基因在大肠杆菌细胞中的高效表达不仅取决于转录启动的 频率,而且在很大程度上还与mRNA的翻译起始效率密切相关。大 肠杆菌细胞中结构不同的mRNA分子具有不同的翻译效率,它们之 间的差别有时可高达数百倍。mRNA翻译的起始效率主要由其5‘ 端的结构序列所决定,称为核糖体结合位点(RBS)
核糖体结合位点
核糖体结合位点的结构
大肠杆菌核糖体结合位点包括下列四个特征结构要素: 位于翻译起始密码子上游的6-8个核苷酸序列5’ UAAGGAGG 3’, 即Shine-Dalgarno(SD)序列,它通过识别大肠杆菌核糖体小亚基 中的16S rRNA 3’端区域3’ AUUCCUCC 5’并与之专一性结合,将 mRNA定位于核糖体上,从而启动翻译; 翻译起始密码子,大肠杆菌绝大部分基因以AUG作为阅读框架的起 始位点,但有些基因也使用GUG或UUG作为翻译起始密码子; SD序列与翻译起始密码子之间的距离及碱基组成; 基因编码区5’ 端若干密码子的碱基序列
P 乳糖 异丙基-b-D-硫 代半乳糖苷(IPTG)
启动子Plac介导的转录大幅 提高
P
基底水平转录 阻遏蛋白
O 诱导
高效转录 O
启动子的可控性
启动子
乳糖启动子Plac的可控性:
野生型的Plac上游附近拥有 代谢激活因子(CAP)结合 区,cAMP激活CAP,CAP 结合启动子控制区,进而促 进Plac介导的转录。葡萄糖 代谢使cAMP减少,也能阻 遏Plac介导的转录。因此, 基因工程中使用的乳糖启动 子均为抗葡萄糖代谢阻遏的 突变型,即Plac UV5
Ptac = 3 Ptrp = 11 Plac
-10 区序列
GATACT TATAAT TAATGT TTAACT TATAAT TATAAT
启动子的可控性
启动子
乳糖启动子Plac的可控性:
野生型的Plac与其控制区Olac 偶联在一起,在没有诱导物 存在时,整个操纵子处于基 底水平表达;诱导物可以使
Ptrp 除去色氨酸
Ptrp
Ptrp
Otrp 或加3-吲哚丙烯酸 (IAA) 高效转录
Otrp 高效转录
Otrp
启动子的可控性
启动子
l噬菌体启动子PlL的可控性:
噬菌体启动子PL受CI阻遏蛋白阻 遏,很难直接诱导控制。在基因
Ptrp
工程中常使用温度敏感型的cI突
变基因cI857控制PL。 cI857阻遏蛋 在42℃时失活脱落,PL便可介导 目的基因的表达。但在大型细菌
Apr ori
pKO1
终止密码子 galK
转化galE+、galT+、galK-的大肠杆菌受体菌株
含有外源启动子活性的重组克隆
启动子的构建
启动子
启动子
-35 区序列
PlL PrecA PtraA Ptrp Plac Ptac
TTGACA TTGATA TAGACA TTGACA TTTACA TTGACA
终止子
强终止子的选择与使用
目前外源基因表达质粒中常用的终
止子是来自大肠杆菌rRNA操纵子上的
rrnT1T2以及T7噬菌体DNA上的Tf。对
于一些终止作用较弱的终止子,通常
Apr
可以采用二聚体终止子串联的特殊结
构,以增强其转录终止作用
Tcr pCP1
终止子也可以象启动子那样,通过 特殊的探针质粒从细菌或噬菌体基因 组DNA中克隆筛选
培养罐中迅速升温非常困难,因
Ptrp
此常使用一个双质粒控制系统,
用色氨酸间接控制目的基因表达
阻遏作用
cI857 PL
A
色氨酸 PL
A
目的基因 B
表达 B
终止子
强化转录终止的必要性
外源基因在强启动子的控制下表达,容易发生转录过头现象,即RNA聚合酶滑 过终止子结构继续转录质粒上邻近的DNA序列,形成长短不一的mRNA混合物
cAMP CAP
Plac 葡萄糖代谢
Plac
Plac UV5
高效转录
O cAMP浓度降低
基底水平转录
O 高效转录
O
启动子
启动子的可控性
色氨酸
色氨酸启动子Ptrp的可控性: 阻遏蛋白
基底水平转录
色氨酸启动子Ptrp受色氨酸-阻遏 蛋白复合物的阻遏,转录呈基底 状态。在培养系统中去除色氨酸 或者加入3-吲哚丙烯酸(IAA), 便可有效地解除阻遏抑制作用。 在正常的细菌培养体系中,除去 色氨酸是困难的,因此基因工程 中往往添加IAA诱导Ptrp介导的目 基因的表达
全基因组测序,共有4405个开放型阅读框架 基因克隆表达系统成熟完善 繁殖迅速、培养简单、操作方便、遗传稳定 被美国FDA批准为安全的基因工程受体生物
6 大肠杆菌基因工程
A 大肠杆菌作为表达外源基因受体菌的特征 大肠杆菌表达外源基因的劣势
缺乏对真核生物蛋白质的复性功能 缺乏对真核生物蛋白质的修饰加工系统 内源性蛋白酶降解空间构象不正确的异源蛋白 细胞周质内含有种类繁多的内毒素
6 大肠杆菌基因工程
B 外源基因在大肠杆菌中高效表达的原理
启动子 终止子 核糖体结合位点 密码子 质粒拷贝数
启动子
启动子最佳距离的探测
目的基因
E
E
A
启动子
目的基因
E
E
A 酶切开 Bal31酶解
启动子的筛选
启动子
采用鸟枪法战略,将合适大小的DNA片段 克隆到启动子探针质粒pKO1ห้องสมุดไป่ตู้ 受体细胞染色体DNA上的galE、galT与质 粒上报告基因galk的表达产物联合作用, 可将培养基中的半乳糖酵解成红色素物质
第六章 大肠杆菌基因 工程
6 大肠杆菌基因工程
A 大肠杆菌作为表达外源基因受体菌的特征 B 外源基因在大肠杆菌中高效表达的原理 C 大肠杆菌基因工程菌的构建策略 D 基因工程菌的遗传不稳定性及其对策 E 利用重组大肠杆菌生产人胰岛素
6 大肠杆菌基因工程
A 大肠杆菌作为表达外源基因受体菌的特征 大肠杆菌表达外源基因的优势
过长转录物的产生在很大程度上会影响外源基因的表达,其原因如下: 转录产物越长,RNA聚合酶转录一分子mRNA所需的时间就相应增加,外源基因 本身的转录效率下降; 如果外源基因下游紧接有载体上的其它重要基因或DNA功能区域,如选择性标 记基因和复制子结构等,则RNA聚合酶在此处的转录可能干扰质粒的复制及其它生 物功能,甚至导致重组质粒的不稳定性; 过长的mRNA往往会产生大量无用的蛋白质,增加工程菌无谓的能量消耗; 更为严重的是,过长的转录物往往不能形成理想的二级结构,从而大大降低外源 基因编码产物的翻译效率