电阻—温度特性

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

当导体两端的温度分别为T、T0时,温差电势可由下
式表示:
T
EA T T0 T0σ AdT
式中A—A导体的汤姆逊系数。
对于两种金属A、B组成的热电偶
回路,汤姆逊电势等于它的代数和, 即:
温差电势
EABT T0
T
T0 σ A σ B dT
返回
上页
下页
综上所述,对于匀质 导体A、B组成的热电 偶,其总电势为接触电 势与温差电势之和,用 式子可表示为:
在热电偶回路中,只要中间 导体两端的温度相同,那么接入 中间导体后,对热电偶回路的总 热电势无影响。可用式子表示为:
EABC(T,T0)=EAB(T,T0)
具有中间导体的 热电偶电路
返回
上页
下页
标准电极定律
如果将导体C(热电极,一般为 纯铂丝)作为标准电极(也称参考电 极),并已知标准电极与任意导体配 对时的热电势,则在相同结点温度(T, T0)下,任意两导体A、B组成的热电 偶,其热电势可由下式求得:
由上述分析知,热电势的大小只与材料和结点温度有 关,与热电偶的尺寸、形状及沿电极温度分布无关。应注 意,如果热电极本身性质为非均匀的,由于温度梯度存在, 将会有附加电势产生。
返回
上页
下页
8.1.2 热电偶基本定律
中间导体定律 标准(参考)电极定律 连接导体定律和中间温度定律
返回
上页
下页
中间导体定律
电偶有:铂铑—铂热电偶、镍铬—镍硅热电偶、镍铬— 康铜热电偶等。
返回
上页
下页
铂铑10—铂热电偶(分度号S)
这种热电偶可在1300℃以下范围内长期使用,短期可 测1600℃高温,复制精度和测量准确性高,但此热电偶的 材料为贵金属,成本较高。
镍铬—康铜热电偶(E)
热电动势大,电阻率小,价格便宜;但抗氧化性差, 适用于还原性和中性气体下测温,测量上限较低。
镍铬—镍硅热电偶(K)
化学稳定性较高,测量范因为–50~+1312℃,复制性 好,产生热电势大,线性好,价格便宜,是工业生产中最 常用的一种热电偶。
返回
上页
下页
热电偶的结构
将两个热电极的一个端点焊接在一起组成热接点,就 构成了热电偶。工程上实际使用的热电偶大多数是由热 电极1、绝缘材料2、保护套管3和接线盒4等部分组成。
返回
上页
下页
8.1.1 热电效应
热电效应(塞贝克效应) :
热电偶产生的热电势称 为温差电势或塞贝克电势,通 称热电势。回路中产生的电流 称为热电流,导体A、B称为 热电极。测温时结点1置于被 测的温度场中,称为测量端 (工作端、热端);结点2一般 处在某一恒定温度,称为参考 端(自由端、冷端)。
返回
EAB(T,T0)=EAC(T,T0)+ECB(T,T0)
三种导体分别组成 的热电偶
返回
上页
下页
连接导体定律和中间温度定律
连接导体定律:在热电偶回路中,如果热电极A、B分别与
连接导线A’、B’相连接,结点温度分别为T、Tn、T0 ,那么回 路的热电势将等于热电偶的热电势EAB(T,Tn ) 与连接导线A’、B’ 在温度Tn、T0 时热电势 EA’B’(T,Tn ) 的代数和,即 :
上页
下页
两种导体的接触电势
EAB T

kቤተ መጻሕፍቲ ባይዱ e
ln
NA NB
接触电势
式中 k — 波尔兹曼常数,为1.38×10-16; T — 接触处的绝对温度; e — 电子电荷数;
NA、NB — 金属A、 B的自由电子密度。
返回
上页
下页
同理可以计算出A、B两种金属构成回路在温度T0端的
接触电势为:
EAB T0
k T0 e
ln
NA NB
但 EAB T 与 EAB T0 方向相反,所以回路的总接触电势
EAB T

EAB T0
k e
T
T0 ln
NA NB
由上式可见,当两结点的温度相同,即T=T0 ,回路 中总电势将为零。
返回
上页
下页
•单一导体的温差电势
8.1 热电偶
把两种不同导体或半导体连接成闭合回路,如果 将它们的两个接点分别置于温度各为T和T0(设T>T0) 的热源中,则在该回路内就会产生热电动势,这种现 象称作热电效应。由这两种导体的组合并将温度转换 成热电势的传感器称为热电偶。
热电效应示意图
返回
上页
下页
热电偶作为敏感元件优点为:
① 结构简单:其主体实际上是由两种不同性质的导 体或半导体互相绝缘并将一端焊接在一起而成的; ② 具有较高的准确度 ; ③ 测量范围宽,常用的热电偶,低温可测到-50℃, 高温可以达到1600℃左右,配用特殊材料的热电极, 最低可测到-180℃,最高可达到+2800℃的温度; ④ 具有良好的敏感度; ⑤ 使用方便。
EAB(T,Tn,T0)=EAB(T,Tn)+EAB(Tn,T0)
返回
上页
下页
举例:
已知A、B组成的热电偶在(1000C,00C)时热电 势为1mV,且A、B组成的热电偶在(10000C,00C)时 热电势为10mV,则它们在(10000C,1000C)时的热电 势为:
10-1=9mV
返回
上页
下页
热电偶回路的总热电势
EABT T0 EABT EABT0
T
T0 σ A σ B dT
返回
上页
下页
讨论:
①如果热电偶两电极材料相同,则虽两端温度不同(T≠T0)。 但总输出电势仍为零(均质导体定律)。因此必须由两种 不同的材料才能构成热电偶。
②如果热电偶两结点温度相同,则回路中的总电势必等于 零。
8.1.3 热电偶材料、结构及常用热电偶
热电偶的电极材料主要要求:
①配制成的热电偶应具有较大的热电势,并希望热电势与 温度之间成线性关系或近似线性关系。
②能在较宽的温度范围内使用.并且在长期工作后物理化 学性能与热电性能都比较稳定。
③电导率要求高,电阻温度系数要小。 ④易于复制及成批生产,工艺简单,价格便宜。标准化热
EABB’A’(T,Tn,T0)=EAB(T,Tn)+EA’B’(Tn,T0)
用连接导线的热电偶回路
返回
上页
下页
如A与A’、B与B’材料相同,且结点温度分别为T、 Tn、T0时,有:
中间温度定律:
热电偶在结点温度为T、T0时的热电势值EAB(T,T0 ),
等于热电偶在(T,Tn ) 、 (Tn,T0 ) 时相应的热电势EAB(T,Tn ) 与 EAB(Tn,T0 ) 的代数和。如下式所示:
相关文档
最新文档