平行四边形单元 易错题测试综合卷检测
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行四边形单元 易错题测试综合卷检测
一、解答题
1.如图1,AC 是平行四边形ABCD 的对角线,E 、H 分别为边BA 和边BC 延长线上
的点,连接EH 交AD 、CD 于点F 、G ,且//EH AC . (1)求证:AEF CGH ∆≅∆
(2)若ACD ∆是等腰直角三角形,90ACD ∠=,F 是AD 的中点,8AD =,求BE 的长:
(3)在(2)的条件下,连接BD ,如图2,求证:22222()AC BD AB BC +=+
2.正方形ABCD 中,对角线AC 与BD 交于点O ,点P 是正方形ABCD 对角线BD 上的一个动点(点P 不与点B ,O ,D 重合),连接CP 并延长,分别过点D ,B 向射线作垂线,垂足分别为点M ,N .
(1)补全图形,并求证:DM =CN ;
(2)连接OM ,ON ,判断OMN 的形状并证明.
3.如图,点A 、F 、C 、D 在同一直线上,点B 和点E 分别在直线AD 的两侧,且AB =DE ,∠A =∠D ,AF =DC .
(1)求证:四边形BCEF 是平行四边形;
(2)若∠DEF =90°,DE =8,EF =6,当AF 为 时,四边形BCEF 是菱形.
4.如图,在平行四边形ABCD 中,AB ⊥AC ,对角线AC ,BD 相交于点O ,将直线AC 绕点O 顺时针旋转一个角度α(0°<α≤90°),分别交线段BC ,AD 于点E ,F ,连接BF .
(1)如图1,在旋转的过程中,求证:OE =OF ;
(2)如图2,当旋转至90°时,判断四边形ABEF 的形状,并证明你的结论; (3)若AB =1,BC =5,且BF =DF ,求旋转角度α的大小.
5.如图①,已知正方形ABCD 中,E ,F 分别是边AD ,CD 上的点(点E ,F 不与端点重合),且AE=DF ,BE ,AF 交于点P ,过点C 作CH ⊥BE 交BE 于点H .
(1)求证:AF ∥CH ;
(2)若AB=23 ,AE=2,试求线段PH 的长;
(3)如图②,连结CP 并延长交AD 于点Q ,若点H 是BP 的中点,试求 CP
PQ
的值. 6.共顶点的正方形ABCD 与正方形AEFG 中,AB =13,AE =52. (1)如图1,求证:DG =BE ;
(2)如图2,连结BF ,以BF 、BC 为一组邻边作平行四边形BCHF . ①连结BH ,BG ,求
BH
BG
的值; ②当四边形BCHF 为菱形时,直接写出BH 的长.
7.在平面直角坐标中,四边形OCNM 为矩形,如图1,M 点坐标为(m ,0),C 点坐标为(0,n ),已知m ,n 550n m --=.
(1)求m ,n 的值;
(2)①如图1,P ,Q 分别为OM ,MN 上一点,若∠PCQ =45°,求证:PQ =OP+NQ ; ②如图2,S ,G ,R ,H 分别为OC ,OM ,MN ,NC 上一点,SR ,HG 交于点D .若∠SDG =135°,55
HG 2
=
,则RS =______; (3)如图3,在矩形OABC 中,OA =5,OC =3,点F 在边BC 上且OF =OA ,连接AF ,动点P 在线段OF 是(动点P 与O ,F 不重合),动点Q 在线段OA 的延长线上,且AQ =FP ,连接PQ 交AF 于点N ,作PM ⊥AF 于M .试问:当P ,Q 在移动过程中,线段MN 的长度是否发生变化?若不变求出线段MN 的长度;若变化,请说明理由.
8.在四边形ABCD 中,对角线AC 、BD 相交于点O ,过点O 的直线EF ,GH 分别交边AB 、CD ,AD 、BC 于点E 、F 、G 、H .
(1)观察发现:如图①,若四边形ABCD 是正方形,且EF ⊥GH ,易知S △BOE =S △AOG ,又因为S △AOB =
1
4
S 四边形ABCD ,所以S 四边形AEOG = S 正方形ABCD ; (2)类比探究:如图②,若四边形ABCD 是矩形,且S 四边形AEOG =1
4
S 矩形ABCD ,若AB =a ,AD =b ,BE =m ,求AG 的长(用含a 、b 、m 的代数式表示);
(3)拓展迁移:如图③,若四边形ABCD 是平行四边形,且S 四边形AEOG =1
4
S ▱ABCD ,若AB =3,AD =5,BE =1,则AG = .
9.已知,矩形ABCD 中,4,8AB cm BC cm ==,AC 的垂直平分EF 线分别交AD BC 、于点E F 、,垂足为O .
(1)如图1,连接AF CE 、,求证:四边形AFCE 为菱形;
(2)如图2,动点P Q 、分别从A C 、两点同时出发,沿AFB △和CDE △各边匀速运动一周,即点P 自A F B A →→→停止,点O 自C D E C →→→停止.在运动过程中,
①已知点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,当
A C P Q 、、、四点为顶点的四边形是平行四边形时,则t =____________.
②若点P Q 、的运动路程分别为a b 、 (单位:,0cm ab ≠),已知A
C P Q 、、、四点为顶点的四边形是平行四边形,则a 与b 满足的数量关系式为____________.
10.已知三角形纸片ABC 的面积为48,BC 的长为8.按下列步骤将三角形纸片ABC 进行裁剪和拼图:
第一步:如图1,沿三角形ABC 的中位线DE 将纸片剪成两部分.在线段DE 上任意..取一点F ,在线段BC 上任意..
取一点H ,沿FH 将四边形纸片DBCE 剪成两部分; 第二步:如图2,将FH 左侧纸片绕点D 旋转180°,使线段DB 与DA 重合;将FH 右侧纸片绕点E 旋转180°,使线段EC 与EA 重合,再与三角形纸片ADE 拼成一个与三角形纸片ABC 面积相等的四边形纸片.
图1 图2
(1)当点F ,H 在如图2所示的位置时,请按照第二步的要求,在图2中补全拼接成的四边形;
(2)在按以上步骤拼成的所有四边形纸片中,其周长的最小值为_________.
【参考答案】***试卷处理标记,请不要删除
一、解答题
1.(1)证明见解析;(2)62BE =3)证明见解析. 【分析】
(1)根据平行四边形的对边平行,结合平行线的性质可证明∠E=∠CGH ,∠H=∠AFE ,再证明四边形ACGE 是平行四边形即可证明AE=CG ,由此可利用“AAS”可证明全等; (2)证明△AEF ≌△DGF (AAS )可得△DGF ≌△CGH ,所以可得1
2
AE DG CG
CD ,再结合等腰直角三角形的性质即可求得CD ,由此可得结论;
(3)利用等腰直角三角形的性质和平行四边形的性质结合勾股定理分别把22AC BD +和