精馏分离技术研究新进展

精馏分离技术研究新进展
精馏分离技术研究新进展

精馏分离技术研究新进展

赵晶莹1,李洪涛2

(中国石油大庆化工研究中心,黑龙江大庆163714)

摘要:本文在参考大量文献的基础上,着重介绍了各种精馏方法以及国内外发展状况,对萃取精馏和恒沸精馏方法进行比较,并对催化精馏技术的国内外研究进展做了详细介绍。

关键词:分离技术;精馏方法;反应精馏中图分类号:T Q028131 

文献标识码:A

文章编号:0253-4320(2008)S1-0121-04

Latest advance of distillation technology

ZH AO Jing 2ying ,LI Hong 2tao

(Research Center of Daqing chemical Petrochina ,Daqing 163714,China )

Abstract :By consulting many literatures ,the distillation methods and the current development situation are introduced.The extractive distillation and constant boiling distillation are compared ,and the development of catalytic distillation technology is presented.

K ey w ords :separation technology ;distillation method ;reactive distillation

 收稿日期:2008-05-08

 作者简介:赵晶莹(1978-),女,主要从事流程模拟优化工作。

1 精馏概述

精馏过程的热力学基础是组分间的挥发度的差异(a >1)。按操作过程分间歇精馏和连续精馏;按操作方式分:常减压精馏、恒沸精馏、萃取精馏、反应精馏、催化精馏、抽提精馏、热泵精馏和精密精馏。常减压精馏是普通的精馏方法,恒沸精馏和萃取精馏的基本原理都是在分离的混合液中加入第3组分,以提高组分间的相对挥发度,从而用精馏的方法将它们分离。恒沸精馏和萃取精馏是根据第3组分所起的作用进行划分的。恒沸精馏和萃取精馏是采用物理方法改变原有组分的相对挥发度。近年来人们逐渐重视对于将化学反应和精馏过程结合起来的研究。这种伴有化学反应的精馏过程称为反应精馏。按照反应中是否使用催化剂可将反应精馏分为催化反应精馏过程和无催化剂的反应精馏过程,催化反应精馏过程按所用催化剂的相态又可分为均相催化反应精馏和非均相催化精馏过程,非均相催化精馏过程即为通常所讲的催化精馏(catalytic distilla 2tion )。这种非均相催化精馏过程能避免均相反应精馏中存在的催化剂回收困难以及随之带来的腐蚀、污染等一系列问题。

2 精馏方法

211 恒沸精馏

在被分离的二元混合液中加入第3组分,该组

分能与原溶液中的1个或者2个组分形成最低恒沸物,从而形成了“恒沸物-纯组分”的精馏体系,恒沸物从塔顶蒸出,纯组分从塔底排出,其中所添加的第3组分称为恒沸剂或夹带剂。

决定恒沸精馏可行性和经济性的关键是恒沸剂的选择,对恒沸剂的要求:①与被分离组分之一(或之二)形成最低恒沸物,其沸点与另一从塔底排出的组分要有足够大的差别,一般要求大于10℃。②希望能与料液中含量较少的那个组分形成恒沸物,而且夹带组分的量要尽可能高,这样夹带剂用量较少,能耗较低。③新形成的恒沸物要易于分离,以回收其中的夹带剂。如乙醇-水恒沸精馏中静置分层的办法。④满足一般的工业要求,如热稳定、无毒、不腐蚀、来源容易、价格低廉等。

夹带剂量是影响恒沸精馏过程设计的重要参数,一些学者对此进行了研究。H.W.Andersen [1]等以甲苯为夹带剂的丙酮-庚烷恒沸物系为例研究了恒沸精馏中蒸汽量、夹带剂量、组分分离效果之间的关系,提出在一定范围内增加夹带剂量时蒸汽量的变化对分离效果没有影响。Laroche 等研究了以苯为夹带剂的乙醇-水分离过程,得到了改变夹带剂量时轻组分相对挥发度的变化规律。朱旭容等研究了间歇恒沸过程中以苯为夹带剂分离异丙醇一水恒沸物系时夹带剂量对分离度的影响,指出了夹带剂量变化影响产品的组成。

?

121?第28卷增刊(1)现代化工

June 2008

2008年6月M odern Chemical Industry

现有的2类确定最小夹带剂量的方法是实验方法和做图方法。实验方法的优点是能够得到完整的实验数据,但对实验装置的精确度要求较高,实验过程也烦琐而费时;做图法是利用余留物曲线结合夹点曲线、拐点曲线来求解。做图法简单直观但仅局限于三组分,不适用于多组分物系。

以环己烷(苯)为夹带剂的异丙醇一水分离过程为例,运用模拟的方法研究了夹带剂量对恒沸精馏全流程的影响,

提出了新的计算最小夹带剂量方法,并研究了最小夹带剂量与恒沸精馏塔理论塔板数之间的关系。用ASPE

N P LUS 模拟软件以夹带剂环己烷流量为变量,对夹带剂量在全流程的影响进行了模拟研究,模拟结果如图1、图2所示。

脱水塔理论板数N =12 脱水塔理论板数N =30

1—系统总热负荷;2—换热器冷负荷

图1 夹带剂流量与热负荷关系曲线

脱水塔理论板数N =12 脱水塔理论板数N =30

1—提纯塔塔釜中的异丙醇;2—脱水塔塔釜中的水

图2 夹带剂流量与釜底醇水纯度关系曲线从图1、图2可以看出随着夹带剂环己烷流量的增大,系统热负荷、蒸汽冷凝器冷负荷和两塔釜底水与异丙醇纯度都逐渐升高。由于提纯塔底的异丙醇纯度随夹带剂量的增大而增大,所以当确定了一定的分离要求即规定一定的提纯塔塔釜组分纯度时,必存在一与之对应的夹带剂量,称之为全流程最小夹带剂量。以回收纯度为0198的异丙醇为例,恒沸精馏全流程的最小夹带剂量约3160kg/h 。

研究理论板数与全流程最小夹带剂量的关系,取水、异丙醇的纯度均不低于0198,模拟计算的结果如图3所示。

1—最小夹带剂量;2—热负荷

图3 塔板数与最小夹带剂量关系曲线从图3可以看出,随着提纯塔理论板数的增加,最小夹带剂量与系统热负荷逐渐下降:在塔板数小于30时,下降很快,当超过30以后最小夹带剂量与系统热负荷变化较小。这一方面说明增加理论板数可以降低最小夹带剂量和过程所需的热负荷,另一方面也说明在恒沸精馏流程中存在一个适宜的理论

板数,当理论板数超过此值时,最小夹带剂量和过程所需的热负荷变化不显著。本例中适宜理论板数约为35。212 萃取精馏

萃取精馏是通过向精馏系统中加入适当的质量分离剂(MS A )来显著增大相对挥发度很小或者易形成共沸物的混合物组分之间的相对挥发度,使分离易于进行,从而获得产品的一种特殊精馏技术。对于制药、废溶剂提取、精细化工等生产多为产量小、品种多的物料分离提纯,Berg [2]于1985年提出将已经在化工上应用广泛的连续萃取精馏改为采用间歇方式操作。间歇萃取精馏(BE D )结合了间歇精馏与萃取精馏的诸多优点,如:设备简单,投资小;可用于同一塔分离多组分混合物成几个不同馏分;适用性强,所处理物料组成可频繁改动;通过选取适宜萃取剂,可应用于在化工、制药、精细化工等行业中普通精馏无法完成的共沸物系及相对挥发度极小的物系分离,且较恒沸精馏过程简单。由于这些特点,这种操作方式一经提出,便得到广大学者的认同和广泛研究。

但是任何事物矛盾双方面是同时存在的。萃取精馏一方面增加了被分离组分之间的相对挥发度,使分离能够得以进行,另一方面带来的最大缺点是溶剂比大,从而导致生产能力提高遇到困难,而且过程能耗大。为了解决这一弊端,对萃取精馏过程的研究一般是从“流”即萃取精馏流程安排、萃取精馏塔的塔板结构和“场”即分离剂或溶剂的选择出发,对萃取精馏分离过程不断发展和完善。

一般来说,萃取精馏流程和塔板结构的改进是

?221?现代化工第28卷增刊(1)

有限的,选择好的萃取剂或对萃取剂进行改进和优化是提高萃取精馏塔生产能力和降低能耗的最有效途径。例如:对于分离有机物和水的混合物(醇水、二甲基甲酰胺与水等)来说,采用加盐萃取精馏是一种很好的方法。因此,当前的研究热点是如何选择合适的萃取剂,选择溶剂的一般方法是先采用性质约束法(试验法、经验筛选法和活度系数法)划定分离混合物系所需溶剂的大致范围,对于一个被分离物系,通过这种方法往往可以得到多个适用的溶剂,然后应用计算机优化方法(计算机辅助分子设计方法、人工神经网络方法)寻求最佳溶剂已成为研究的方向。

萃取精馏的溶剂选择需要满足以下条件:①高选择性;②溶剂的挥发度要远低于所需要分离的物系中最高沸点组分的挥发度,从而使萃取剂的回收易于实现;③价廉易得;④毒性小,腐蚀性小,对环境的污染少;⑤良好的热稳定性和化学稳定性;⑥相容性好。溶剂须和被分离组分具有较大的溶解度。

高选择性的溶剂对萃取精馏来说是至关重要的,只有采用高选择性的溶剂才能使萃取精馏的操作成本和设备投资达到最小,溶剂的选择是萃取精馏技术的核心。

213 反应(催化)精馏

1921年Bacchaus首先提出了反应精馏的概念,反应精馏(RD,reactive distillation)是将化学反应与精馏分离结合在同一设备中进行的一种耦合过程。20世纪70年代中期,Eastman K odak[3]公司首先实现了酯化和萃取精馏相结合的均相反应精馏过程工业化,70年代后期扩展到非均相体系。美国Chemical Research&Licensing公司于1978年起开发催化精馏技术,1981年建成了635kg/d的甲基叔丁基醚(MT BE)催化精馏装置。由于世界对MT BE需求量不断增加,从而使该技术受到了广泛关注。

反应精馏对反应物和产物的挥发度的要求为:

①产物的挥发度比反应物的挥发度都大或都小;

②反应物的挥发度介于产物的挥发度之间。只有这样采用反应精馏才能收到良好的效果。

反应精馏技术与传统的反应和精馏技术相比,具有显著的优点:①反应和精馏过程在一个设备内完成,投资少、操作费用低、节能;②反应和精馏同时进行,不仅改进了精馏性能,而且借助精馏的分离作用,提高了反应转化率和选择性;③通过即时移走反应产物,能克服可逆反应的化学平衡转化率的限制,或提高串联或平行反应的选择性;④温度易于控制,避免出现“热点”问题;⑤缩短反应时间,提高生产能力。

反应精馏最早应用于甲基叔丁基醚(MT BE)和乙基叔丁基醚(ET BE)等合成工艺中,现已广泛应用于酯化、异构化、烷基化、叠合过程、烯烃选择性加氢、氧化脱氢、碳一化学和其他反应过程。但是反应精馏过程的应用是有其局限性的,它只适用于化学反应和精馏过程可在同样温度和压力范围内进行的工艺过程。

此外,在反应和精馏相互耦合过程中,还有许多的问题,如精细化工生产的间歇反应精馏非稳态特性、反应和精馏过程的最佳匹配、固体催化剂失活引起的操作困难、开发通用的反应精馏过程模拟软件和设计方法等方面,都有待进一步研究。因此,当前对反应精馏的研究主要集中在催化剂的选择、催化剂的装填形式、反应精馏塔内的反应动力学、热力学和流体力学的研究、反应精馏的工艺优化以及如何找出反应精馏过程中的气液平衡关系,以指导工业化生产。

催化精馏过程中伴有化学反应的过程,由于分离和反应的强烈交互作用,使得该过程的理论模拟和工程设计变得繁杂,过程的影响因素很多,对其研究比传统的反应和精馏要困难得多。虽然催化精馏技术很早就提出了,但到目前为止,仍未建立完整的理论体系。自20世纪80年代以来,国外在催化精馏技术的基础性研究、工艺开发和应用等方面已取得了显著的成果。近10年来,国内学者对催化精馏技术进行了大量深入的研究,在反应精馏塔、催化剂、数学模型等方面取得了很大进展[4]。

(1)催化精馏塔

按反应和精馏结合方式的不同,催化精馏塔可分为2种结构形式:①反应和精馏同时进行,化学反应发生在塔板上或具有催化作用的填料层内;②反应和精馏交替进行,催化精馏塔分反应段和精馏段。反应物先在反应段进行反应,反应产物再进入精馏段进行精馏,通常催化精馏塔可分为精馏段、反应精馏段和提馏段3个部分。进料位置及操作压力、反应段位置、回流形式和回流比等操作条件,取决于物料的挥发度。

国外研究开发了多种催化精馏塔结构,目前较成功的有CR&L结构、IFP结构、Chevron结构和库拉列结构等;此外,还在努力开发框板式、填料隔栅式等催化精馏塔。国内南京大学、齐鲁石化研究院等许多科研单位在这方面进行了大量的工作,并已取

?

3

2

1

?

2008年6月赵晶莹等:精馏分离技术研究新进展

得了很大进展。

(2)催化剂

催化精馏催化剂可分为均相和非均相催化剂。非均相催化精馏过程要比均相催化精馏过程复杂得多,对催化精馏技术的研究主要是对非均相催化精馏过程的研究。在非均相催化精馏过程中,催化粒子布于精馏塔中,它既有加速组分间化学反应的作用,又兼有填料的作用。因而催化粒子在精馏塔中的装填方式对催化精馏效果具有很大的影响,同时也决定着塔的内部结构。

非均相催化一般具有反应速率随催化剂的表面积增大而增大的特点,因而常希望催化剂颗粒越小越好。但催化剂太细必将导致床层的阻力过大,塔处理能力降低。催化剂的装填方式有多种,一种装填方式是将催化剂直接散堆在精馏塔塔板上,用几个分馏塔盘将催化剂床层分开,蒸汽从下面塔盘上升通过催化剂,液体则从上面的塔盘下降通过催化剂床层,此种方式易造成催化剂流失;另一种装填方式是将催化剂置于多孔介质中形成催化剂构件,即催化剂包,此种方式应用较普遍。所用的多孔介质必须对反应是惰性的,操作条件下是稳定的;同时,多孔介质的孔径大小必须保证催化剂颗粒不会漏出。所使用的多孔介质有棉花、玻璃纤维、聚酯或尼龙丝、聚四氟乙烯编织物,以及铝、铜、不锈钢等材料的丝网等。催化剂包有圆柱状、环状、六面体、片状、捆束状等。总之,装填方式的改进是以装卸方便、增加汽液接触面积、降低压降及提高催化剂效率为目的。

目前,国内已成功开发了一些催化剂固定构件。齐鲁石化研究院在MT BE生产中,设计了一种新型催化精馏设备和催化剂装填系统,其特点是将反应段分为若干床层,两层间安装一分馏塔盘,催化剂以散装形式直接装填于反应段的催化剂床层中,催化剂可由装入口直接装入,用过的催化剂可从卸出口直接卸出,操作容易,提高了工作效率。南京大学发明了“固体活性颗粒固定架”,形如精馏中的规整填料,用不锈钢等材料的丝网做成,直径与反应塔内径一致,催化剂均匀固定其中,孔隙较大,汽液分布均匀,并克服了壁流。

(3)数学模型

催化精馏操作的影响因素很多,规律难以把握,通过建立合理的数学模型进行模拟,对实验研究、工程设计和生产操作等具有重要的指导意义。因而目前对催化精馏技术的研究工作主要集中在催化精馏过程的数学模拟方面。

国外已开发了10多种催化精馏的数学模型,并成功开发了可靠的过程模拟计算软件。国内在此方面也做了大量的工作,清华大学、南京大学、华东理工大学等都对催化精馏过程数学模型的建立和求解进行了研究开发;宁波大学开发了串釜式催化精馏稳态操作的非平衡级数学模型;广西民族学院以乙酸正丁酯合成新工艺为基础,开发了基于Windows 的催化精馏模拟仿真软件SRD。通过对乙酸甲酯水解物系、二甲苯和邻二甲苯反应物系及乙酸、乙醇酯化物系等催化精馏过程的模拟计算,取得了令人满意的结果。

总体而言,国内对催化精馏技术的研究和推广应用与国外相比还有很大的差距。

214 抽提精馏

20世纪60年代中期德国K rupp Uhde发展了M orphlane的抽提精馏[5]工艺,即从加氢煤焦油中回收高纯度苯发展而来。由于煤焦油中芳烃含量很高,液-液抽提技术就不再适用,而极性溶剂却适用于此种情况。在抽提精馏技术中,决定的因素是溶剂改变混合物中烃类蒸汽压的能力,这种作用是由溶剂分子的极性结构所引起的,并导致溶液中所有烃类的蒸汽压隆低,但程度不同。抽提精馏的原理就是首先将沸点相近的馏分脱除,然后与极性溶剂混合,提高沸点差,增大非芳烃的挥发度,并除去共沸混合物。

215 热泵精馏

传统的精馏设备能耗大,热力学效率很低。对此,人们提出了许多节能措施。大量的理论分析、实验研究以及工业应用表明,热泵精馏的节能效果十分显著[6]。

热泵精馏是把精馏塔塔顶蒸汽加压升温,使其用作塔底再沸器的热源,回收塔顶蒸汽的冷凝潜热。根据热泵所消耗的外界能量不同,热泵精馏可分为蒸汽压缩式和蒸汽喷射式2种类型。

塔顶气体直接压缩式热泵精馏应用十分广泛,如丙烯-丙烷的分离采用热泵精馏,其热力学效率可以从316%提高到811%,节能和经济效益非常显著。

热泵精馏确实是一种高效的节能技术,但需要注意的是,在选择精馏方案时,除应考虑能源费用外,还应考虑其设备投资费等因素,对其经济合理性进行综合评价,在实际中要进行优化设计工艺流程, (下转第126页)

程对提高精馏效率有着根本性的意义。对于传统的传质设备如填料塔、板式塔等,由于在重力场的作用下,其相间传质速率不可避免地受到重力场的影响,因此,要想强化传质过程,缩小设备体积,就必须突破重力场的影响[5]。超重力传质技术就是在此背景下诞生的一种前沿技术,它利用强大的离心力场代替了重力场,从而实现了传质过程的强化。从理论上讲,在超重力场中,精馏过程中的气液两相由于接触面积大且相界面又能快速更新,使得气液两相在较短的时间内能达到相平衡,从而达到降低理论塔板高度的目的。因此,利用超重力环境下高度强化的传质过程和微观混合过程特性,可以将往往高达几十米高的精馏塔用不到2m 的超重力机代替,这

无疑将会大大降低生产成本并极大地提高其分离效率。312 超重力精馏典型工艺流程

超重力精馏的实验流程如图1所示。由再沸器出来的蒸汽从气体进口管进入旋转床外腔,在气体压力的作用下自外向内作强制性流动通过填料层,最后汇集于填料床的中心管,然后从气体出口进入冷凝器。经冷凝器冷凝后,回流液体通过转子流量计计量,然后进入位于中央的一个液体分布器,经喷嘴喷入旋转填料内在离心力作用下自内向外通过填料甩出。液体由旋转床的外壳收集,经液体出口流回再沸器循环进行。

1—再沸器;2—填料;3—机壳;4—液体入口;5—取样口;6—温

度计;7—阀门;8—流量计;9—冷凝器;10—压力表;11—气体出口;12—液体分布器;13—旋转填料床中心管;14—喷嘴;

15—RP B 外腔;16—气体进口、液体出口;17—转轴;18—取样口

图1 实验流程图

313 超重力精馏在国外的发展

由于超重力技术具有以上这些无可比拟的优势,世界上许多化学公司和研究部门都在竞相对超重力技术进行开发研究并进行了一系列中试或工业性运行,以求替代传统的精馏分离操作。其中最早的超重力精馏尝试是英国帝国化学公司(ICI )于1983年报道的工业规模的超重力机进行乙醇与异丙醇和苯与环己烷分离的实例,这套装置成功运转了数千小时,从而肯定了这一新技术的工程、工艺可行性。其传质单元高度仅为1~3cm ,较传统填料塔的1~2m 下降了2个数量级,这也是超重力机问世的同时进行的首次试验;接下来该超重力技术又被应用于脱除被污染的地下水中的有机物,成功将水 (上接第124页)

以便获得节能效果和经济效益最佳的热泵精馏方案。216 精密精馏

精密精馏的基本工艺为多塔流程。精密精馏法可用于工业上混合二甲苯的分离[7]。精密精馏法的优点是技术工艺成熟,缺点是能耗高、设备复杂并且间、对二甲苯不能完全分离,国外正逐渐淘汰这种分离方法。但在传统的精密精馏方法基础上,提出新的工艺方案,以节省能耗、降低设备费用,也是一种可行的研究,尤其节能是多塔工艺更应多加考虑改进的地方。

3 结语

精馏技术发展至今,其发展方向已经从常规精馏转向解决普通精馏过程无法分离的问题,通过物

理或化学的手段改变物系的性质,使组分得以分离,或通过耦合技术促进分离过程,并且要求低能耗、低成本,向清洁分离发展。在精馏基础研究方面[8]:研

究深度由宏观平均向微观、由整体平均向局部瞬态发展;研究目标由现象描述向过程机理转移;研究手段逐步高技术化;研究方法由传统理论向多学科交叉方面开拓。

参考文献

[1]Hmm phrey J L ,K eller G E Ⅱ.Separation Process T echnology[M].New

Y ork :M cG raw 2H ill ,1997.

[2]王训遒,赵文莲,孙晓波.恒沸精馏分离硝基氯苯的研究[J ].河

南化工,2002(12):12-13.

[3]刘宗宽,顾兆林,贺延龄,等.燃料乙醇热沸恒沸精馏新工艺的研

究[J ].化工进展,2003,22(11):1147-1149.

[4]刘根生.浅述催化精馏技术[J ].兰化科技,1994,12(4):281-284.[5]刘劲松,白鹏,朱思强,等.反应精馏过程的研究进展[J ].化学工

业与工程,2002,19(1):104-105.

[6]赵贤广,饶俊.国内催化精馏技术研究进展及应用[J ].化学工业

与工程技术,2002,23(5):24-26.

[7]祝石华.抽提精馏技术及改进[J ].化工进展,2001(6):16-19.[8]朱玉琴,李迓红.高效节能的热泵精馏技术[J ].发电设备,2003

(3):48-50.■

分离工程的新进展

分离工程的新进展 化工研10-9 Z1003144 王顺顺 摘要:简要介绍分离工程的最新进展。各主要分离技术的发展现状。分离工程在理论研究、实验室研究及过程强化技术。分离技术也将在现在和未来推动现代化工和相关工业的发展,并在高新技术领域的发展中大显身手。 关键词:分离技术;研究;发展 1引言 20世纪前期,在总结化工生产实践经验的基础上,形成了化工分离单元操作的概念;20世纪中期,分离工程理论得以充实和完备;20世纪后期,分离技术不断深化与拓宽。 2各传统分离技术方面 2.1 精馏 精馏用于分离液体混合物广泛应用于炼油,化工,轻工食品以及空气分离等,是最重要的分离方法之一。20世纪中叶以来各种生产能力大、分离效率高、流动阻力低的新型塔器的出现,进一步促进了炼油工业的技术进步和发展[1]。在炼油和石化等工业应用中取得了明显的经济效益,用网板波纹填料和高效浮阀塔板对数百座旧式板式塔进行改造,使分离能力和气体通量增加了30%~50%。在石化工业中也大量应用着精馏等各种分离操作,如在大型乙烯装置中,裂解气深冷分离方法,实际上是在低温条件下的多组分冷凝精馏过程。对于C4馏分分离和C5馏分分离,由于各组分沸点差小,普通精馏难以奏效,为此专门发展了萃取精馏、恒沸精馏、吸收和吸附与精馏结合等方法。 2.2 吸收 吸收用于分离气体混合物,目的有直接制取产品如用水吸收HCL制取盐酸;或对原料气实行净化,如焦炉气中苯的脱出;或环保的要求,如烟道气脱硫等。到现在,其技术成熟度与工业应用度也几乎完美。 2.3 结晶 结晶是一古老传统的分离技术,多在蒸发的下游,最终获得固体产品。技术在二十世纪50年代取得重大进展,最著名的是采用深冷结晶法从混合二甲苯中分离出对位二甲苯。至20世纪80年代,多级分步结晶技术逐步工业化,使结晶技术取得突破性进展,多级分步结晶最大的优点是能耗低。

新型精馏技术介绍

新型精馏技术及其应用 摘要 介绍了萃取精馏、共沸精馏、反应(催化) 蒸馏、吸附蒸馏、膜蒸馏、惰性气体蒸馏、动态高效规整填料塔精馏和分子蒸馏等新型蒸馏技术的基本原理、特点、研究进展和发展方向 关键词萃取精馏共沸精馏反应(催化) 蒸馏吸附蒸馏膜蒸馏惰性气体蒸馏规整填料塔精馏分子蒸馏 蒸馏技术作为当代工业应用最广的分离技术,目前已具有相当成熟的工程设计经验与一定的基础理论研究,随着生物技术、中药现代化和环境化工等领域的不断发展和兴起,人们对蒸馏技术提出了很多新的要求(低能耗、无污染等) 。因此,在产品达到高纯分离的同时又能减低能耗和环境污染就成为蒸馏学科和工程研究开发的主要目标[1 ,2 ] ,并由此开发出以蒸馏理论为基础的许多新型复合传质分离技术,主要有以下几个方面:分子精馏、添加物精馏、耦合精馏和热敏物料精馏。我尽量大概介绍,并将其中个人觉得比较重点的着重详细介绍。 1分子精馏技术 分子蒸馏属于高真空下的单程连续蒸馏技术。在高真空操作压力下,蒸发面和冷凝面的间距小于或等于被分离物质蒸汽分子平均自由程,由蒸发表面逸出的分子毫无阻碍地奔射并凝集在冷凝表面上。这样利用不同物质分子平均自由程不同使其在液体表面蒸发速率不同,从而达到分离目的,蒸馏过程如下图所示。相对于普通的真空蒸馏,分子蒸馏汽液相间不存在相平衡,是一种完全不可逆过程,具有以下特点。操作压力低(0.1~10Pa);"蒸发面和冷凝面之间的间距小(10~50mm),操作温度远低于沸点;物料受热时间短(0.1-10s)。因 而适用于高分子量、高沸点、热稳定性差的物质蒸馏,特别是高分子有机化合物、热敏性食品、医药产品、塑料等物质的分离、提纯、蒸馏、反应等。随着合成化学的进展,新的、从来不为人所知的物质的操作愈来愈多,如高分子物质的单体正在不断地构成新的物质,而且

分离分析论文资料

膜分离技术与分子蒸馏技术 摘要:分离分析技术在生产和生活中有着广泛的用途,选择合适的分离分析方法关乎着实验与生产的成败,根据物质的性质不同所采用的的分离技术也有所差别,本文主要对膜分离技术和分子蒸馏技术的原理特点及在医药方面的应用做了简单的介绍。 关键词:膜分离技术分子蒸馏技术原理特点应用 前言 膜分离技术是一项新兴的高效分离技术,已经被国际公认为20世纪末到21世纪中期最有发展前途的一项重大高新生产技术,成为世界各国研究的热点,目前已被广泛应用医药、食品、化工、环保等各个领域;分子蒸馏技术是一种特殊的液液分离技术,它产生于20世纪20年代,是伴随着人们对真空状态下气体运动理论的深入研究以及真空蒸馏技术的不断发展而逐渐兴起的一种新的分离技术。目前,分子蒸馏技术已成为分离技术中的一个重要分支。 1 膜分离技术 1.1膜分离技术的原理及特点 膜分离是利用具有一定选择透过特性的过虑介质,以外界能量或化学位差为推动力,对多组分混合物进行物理的分离、纯化和富集的过程。膜分离法有许多的种类,虽然各种膜分离过程具有不同的原理和特征,即使用的膜不同,推动力、截流组分不同,适用的对象和要求也不同,但其共同点为过程简单、经济、节能、高效,无两次污染。大多数膜分离过程中物质不发生相变,分离系数较大,操作温度可为常温,可直接放大,可专一配膜等。相对与传统工艺,膜分离具有以下优点:艺简化,一次性投资少,方便维护、操作简便,运行费用低,节省资源;运行无相变,不破坏产品结构,分离效率高,提高产品的收率和质量;不需用溶剂或溶剂用量大大减少,因而废水处理也变得更加容易[1]。 1.2 膜分离技术的种类 目前,国内外在制药和医疗上常用的膜分离技术主要有微滤、超滤、纳滤、

反应萃取技术地研究进展与应用

反应萃取技术的研究进展与应用 摘要:化工过程强化技术是节能减排的重要途径,其包括设备强化和方法强化,反应萃取技术就是方法强化的技术之一。本文综述了反应萃取技术的基本原理及其分类。并介绍了其研究现状和在各个领域的应用,并对其今后的发展前景做出了预测。与传统的萃取技术相比较,反应萃取技术作为一种新型耦合技术能显著提高效率、减少废物排放,是一种高效、节能、清洁、安全、可持续发展的化工新技术。 关键词:反应萃取;进展;应用;超临界 Research Progress and Application of Reactive Extraction Technology ABSTRACT:Chemical process intensification technology is an important way of energy saving and emission reduction. It includes equipment strengthening and methods strengthening, and reaction extraction technology is one of the methods strengthening. The basic principle and classification of reaction extraction technique are reviewed in this paper.Its research status and application in various fields are introduced, and the prospect of its future development is forecasted. Compared with the traditional extraction technology, the reaction extraction technology can improve efficiency and reduce waste emissions, which is a new technology for chemical engineering, energy saving, clean, safe and sustainable development. KEY WORDS:Reaction extraction; Development; Application; Super critical

萃取精馏及共沸精馏在化工中的应用

萃取精馏及共沸精馏在化工中的应用 摘要:选择好的溶剂是提高萃取精馏生产能力和降低能耗的有效途径;开发易分离回收、汽化潜热低、用量少、无毒无腐蚀的共沸剂将是共沸精馏的研究方向。本文综述了萃取精馏及共沸精馏的基本原理,并介绍了萃取精馏及共沸精馏在化工中的最新应用。 关键词:共沸精馏共沸剂萃取精馏萃取剂 在化工产品生产过程中,不可避免地需要对各种各样的混合物进行分离。一般认为挥发度小于1.05的物系或沸点差小于3℃的物系,用普通的精馏方法进行分离在经济上是不适宜的。对于这类物系可以釆用萃取精馏或共沸精馏。萃取精馏即时向待分离物系中加入第三种组分(称为溶剂),增大组分间的挥发性差异,从而达到分离目的的特殊精馏方法。而共沸精馏则是向待分离物系中加入共沸剂,使新组分和被分离系统中的一个或几个组分形成最低共沸物并从塔顶蒸出的特殊精馏方法。 1 萃取精馏 萃取精馏的关键在于溶剂的选择,选择好的溶剂是提高萃取精馏生产能力和降低能耗的有效途径,近年来,许多研究者针对萃取精馏普遍存在的溶剂用量大、能耗大、板效率低等问题,从溶剂的选择入手,对其进行了改进和优化。目前新型溶剂主要包括离子液体、加盐溶剂及复合溶剂。 1.1 离子液体 离子液体是指在室温及相邻温度下完金由离子组成的有机液体物质,具有不挥发、不可燃以及呈液态的温度范围宽等特点。离子液体的溶解性可随阴阳离子类型及取代基的调变而变化,应用范围广泛,可用于分离含水共沸物等物系。 1.2 加盐溶剂 加盐溶剂萃取精馏的理论基础是盐效应。盐对物系相对挥发度的改变远远大于溶剂对其相对挥发度的改变,即盐效应大于溶剂效应,因此加盐萃取精馏的溶剂用量小。同时由于盐能循环利用,可改善塔内汽液平衡关系,减少理论塔板数,降低能耗。 1.3 复合溶剂 由于单一溶剂往往不能同时具有高选择性和溶解性,所以一般在选择性较高的溶剂里配比一定量溶解性较好的溶剂(称助溶剂),改善原溶剂的溶解性,使其更大限度地改变物系的相对挥发度。

催化精馏技术研究进展(DOC)

催化精馏技术应用研究进展 摘要:本文从催化精馏的发展史开始说起,进而介绍了催化精馏塔的内部件及其催化剂的装填方式。综述了国内催化精馏技术在醚化、酯化、加氢、烷基化、酯交换、水解等反应中的新应用与研究进展。指出探索出具有更高活性和选择性、更寿命的催化剂仍是催化精馏技术中的一个重要课题。 1、引言 反应精馏是化学反应与蒸馏技术相耦合的化工过程。最早的反应精馏研究始于1921年,之后,随着对反应精馏研究的不断深入和扩展,到20世纪70年代后期,反应精馏研究突破了均相体系,扩大到非均相体系,即出现了所谓的“催化精馏”工艺。催化精馏的特点是将催化剂引入精馏塔,固体催化剂在催化精馏工艺中既作为催化剂加速化学反应,又作为填料或塔内件提供传质表面。由于催化反应和精馏过程的高度耦合,反应过程中可以连续移出反应产物,使得催化精馏工艺具有高选择性,高生产能力、高收率、低耗能和低投资等优点。最早工业化的催化精馏工艺是甲基叔丁基醚的合成,该工艺由美国Chemical Research & Licensing公司于1978年开发,1981年在美国休斯敦炼厂工业化应用。1985年CR&L公司开始研究将催化精馏用于芳烃的烷基化反应,如用丙烯使苯烷基化制异丙苯。日本旭化成公司也于1984年开发成功了甲醛和甲醇催化精馏合成甲缩醛的技术,建立了工业装置。由于催化精馏技术的诸多优势,国内外学者在该领域已取得了长足发展。

2、催化精馏塔及其填料方式 2.1催化精馏塔 催化精馏塔是催化精馏过程的主要设备,常见的催化精馏塔结构如图2-1 所示。催化精馏塔从上到下分为三个部分,依次为精馏段、反应段和提馏段,原料送入到反应段后先进行反应,反应后的混合物中的轻重组分再分别进入精馏段和提馏段进行精馏和提浓。进料位置根据物料的挥发度不同可设置在反应段的上端或下端,对于原料组成不同的可以从不同位置同时进料。反应段的位置和高度以及操作压力、回流比等操作条件取决于进料的组成、组分的物性和产品的纯度要求等因素[1]。

萃取精馏综述

摘要 萃取精馏是一种特殊精馏方法,适用于近沸点物系和共沸物的分离。萃取精馏按操作方式可分为连续萃取精馏和间歇萃取精馏,间歇萃取精馏是近年发展起来的新的萃取精馏方法。萃取剂的选择是萃取精馏的关键,因此,萃取剂的选择方法很重要。 关键词:萃取精馏;间歇萃取精馏;萃取剂选择

Abstract Extractive distillation is a kind of special rectification method, applicable to almost boiling point system and the separation of azeotrope. Extractive distillation according to the operation mode can be divided into continuous batch extractive distillation, extractive distillation and batch extractive distillation is a new extraction distillation method developed in recent years. The selection of extraction agent is the key of extractive distillation, therefore, the selection of extraction agent method is very important. Key words: extractive distillation; The batch extractive distillation; Extracting agent selection

精馏技术研究进展与工业应用分析 颜志明

精馏技术研究进展与工业应用分析颜志明 发表时间:2019-05-08T16:35:06.583Z 来源:《防护工程》2019年第1期作者:颜志明 [导读] 化学工业是国民经济的支柱产业,分离技术则为化工生产过程中的原料净化、产品提纯和废物处理等提供了技术保证。 浙江新化化工股份有限公司浙江杭州 311607 摘要:化学工业是当今国民经济发展的支柱型产业,分离技术是化工生产过程中保证对原料进行净化、对相关产品进行提纯、对产生的废物进行处理的支撑。伴随着科学技术的发展,化学工程中的分离技术呈现出多元化的发展趋势,精馏就是其中应用最广泛、技术最成熟的分离方式之一,在化工工业生产中扮演着重要角色。国家的精馏技术在研究和应用的过程中取得了极大进步,精馏塔在此技术发展的进程中,也体现出举足轻重的作用。 关键词:精馏技术;研究进展;工业应用 1、概述 化学工业是国民经济的支柱产业,分离技术则为化工生产过程中的原料净化、产品提纯和废物处理等提供了技术保证。随着化学工程技术的发展,分离技术逐渐向着多元化发展。常规的化工分离技术包括精馏、吸收、萃取、结晶、吸附、膜分离等。精馏仍是应用最广泛、技术最成熟的分离方法之一,在工业生产中占有相当的比重。 精馏塔伴随着板式塔和填料塔交替式发展,两者各有其优缺点,现呈现出并行发展的趋势。板式塔具有结构简单、适应性强、造价较低、易于放大等特点;填料塔具有高效率、高通量、低压降、低持液等优势。尽管随着精馏塔的广泛应用,人们对精馏塔的认识越来越深刻,但由于塔内部流体流动及传质过程的复杂性,致使精馏塔的设计仍依靠大量的经验和半经验的数据。塔内流体力学、传质动力学、过程动态学的计算等基础传递问题的研究仍需重视,尽可能地摆脱经验的束缚。同时,随着化学工业的发展,生产大型化、优化节能、高效填料与新型塔板的开发与应用等问题仍需探索。因此,对精馏塔的研究非但不能削弱,而是需要进一步加强,以迎接新的挑战。 近年来,我国精馏塔技术在基础研究与应用方面取得了巨大进步,对精馏塔的结构、性能等进行了较为系统的实验研究,并且获得了丰富的实验数据和研究成果,为推动我国化学工业的发展与进步,做出了显著贡献。本文对精馏塔类型、流体力学性能、传质性能、塔器大型化、过程节能与强化等方面的研究进展进行综述。 2、精馏塔的种类 精馏分离技术是通过精馏塔来完成的,精馏塔有板式塔和填料塔两种,在精馏技术的发展过程中,精馏塔和板式塔也都在不断发展之中,两种精馏塔都是十分重要的应用,各自也具有比较明显的优缺点。其中,板式塔的优点在于其结构简单、适应性强,而且造价比较便宜等;填料塔则具有较高的分离效率,并且还具有高通量、低压降和低持液等方面的优点。下面对这两种精馏塔进行介绍: 2.1板式塔 板式塔最早出现于1813年,当时泡罩塔板是最主要的板式塔的塔板形式,这种板式塔的优点包括具有较大的适用范围、不易堵塞以及操作简单等方面。而后随着板式塔的不断发展,筛孔塔板、浮阀塔板固阀塔板、雾化概念塔板等诸多不同类型的塔板相继出现,这些类型的塔板各具优势,有效的促进了板式塔分离效果的提升。 2.2填料塔 按照填料形式的不同,可以将填料塔分为规整调料以及散堆填料等两种类型。其中,散堆填料是一种具有一定外形结构的颗粒体,包括环形填料、球形填料、鞍形填料等不同的形式。不同的填料形式在特点上有所区别,如鞍形填料明显的特点是压降小,而球形调料由于堆积比较均匀,利于流体的分布,因此在气体吸收以及除尘等方面具有优势。规整调料是指具有规则的几何图形,并且堆砌整齐的填料。应用规整填料的填料塔具有分离效率高、处理量低、压降低以及适应性强等优点,在化学分离装置中有着非常重要的应用,在规整填料中,以Sulzer公司开发的金属丝网波纹规整填料和金属板波纹规整填料最具代表性。 3、精馏技术的发展 3.1塔器大型化 随着化工行业的发展,千万吨炼油、甲醇制烯烃等大型工程开始建设并且投入应用,这些工程的开展促进了精馏塔大型化的发展,这是现代工业体系下精馏塔发展的必然方向。精馏塔的大型化有助于提高设备的分离效率,同时对于减少废物排放也有重要的作用。但是一当前情况来看,精馏过程的大型化还面临着很多科学上以及工程上的问题。首先,分离方面,由于塔器的大型化,导致塔内气液两相的接触状态发生了一定的变化,从而对塔的热量、质量传递造成影响,并且导致了精馏塔分离效率的降低。而且,随着塔板的大型化,其对精馏塔的内件结构造成了一定的影响,要求其在水平度、强度以及流体分布等方面的性能都有所提升。当前针对塔器大型化带来的分离以及内件结构方面的问题,研究人员正进行深入的研究。 3.2数据化设计技术的发展 随着计算机技术和计算机流体力学理论不断的发展完善,数字化设计技术在精馏塔的设计之中起到越来越重要的作用,其已经逐渐的成为了大型塔内件设计、问题诊断和优化的重要手段,在不久的将来计算机集成化系统将会在精馏中有非常重要的应用。当前数字化设计技术在精馏工程中已经有了广泛的应用,包括化工过程模拟技术、三维可视化技术等。其中,化工过程模拟技术是基于气液分离过程的MESH方程组,通过结合相关基础科学,包括综合化工热力学、化学反应以及化学操作单元等,通过这些技术建立化工过程仿真数学模型,并且利用其进行计算,从而得到工艺设计过程中所需要的基础数据。这一技术在精馏过程设计中具有重要的作用,包括塔器设备尺寸估算、工艺操作参数优化等方面,而且还能够为塔器设备的定型、选材以及载荷估算等提供有效的技术支持,从而保证各项参数的正确性。可视化技术在精馏设计中的应用包括液体可视化技术、力学性能可视化技术以及结构可视化技术等方面。 4、精馏技术的工业应用 4.1精馏过程节能技术 精馏过程中的节能技术是在精馏技术不断引用在各个领域中被提出的,精馏技术在各领域有着举足轻重的重要地位,同时精馏技术的应用也为企业的发展和技术的进步提供了巨大的支持,增加了企业的经济效益,经过不断的努力研究分析,人们对精馏技术的认识越来越

萃取精馏综述

萃取精馏综述 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

摘要 萃取精馏是一种特殊精馏方法,适用于近沸点物系和共沸物的分离。萃取精馏按操作方式可分为连续萃取精馏和间歇萃取精馏,间歇萃取精馏是近年发展起来的新的萃取精馏方法。萃取剂的选择是萃取精馏的关键,因此,萃取剂的选择方法很重要。 关键词:萃取精馏;间歇萃取精馏;萃取剂选择

Abstract Extractive distillation is a kind of special rectification method, applicable to almost boiling point system and the separation of azeotrope. Extractive distillation according to the operation mode can be divided into continuous batch extractive distillation, extractive distillation and batch extractive distillation is a new extraction distillation method developed in recent years. The selection of extraction agent is the key of extractive distillation, therefore, the selection of extraction agent method is very important. Key words: extractive distillation; The batch extractive distillation; Extracting agent selection

1-费维扬-化工分离过程强化的若干新进展

化工分离过程强化的若干新进展 费维扬,罗淑娟,赵兴雷 (化学工程联合国家重点实验室(清华大学),北京100084)摘要: 介绍了化工分离过程的重要性、复杂性、多样性及面临的机遇和挑战。分析分离过程强化的新特点,并对它在过程工业可持续发展中的意义和作用进行讨论。 关键词:分离过程;过程强化;新分离技术;新特点 Recent advances on separation process intensification FEI Wei-yang, LUO Shu-juan, ZHAO Xing-lei (State Key Laboratory of Chemical Engineering(Tsinghua University), Beijing 100084, China) Abstract: The importance, diversity, complexity of chemical separation process and the challenge it faced are introduced in this paper. The new characteristics of separation process intensification are analyzed. Its significance and impact on sustainable development of process industry are also discussed Key words: separation process; process intensification; new separation technology; new characteristic 1概述 1.1 化工分离过程的重要性 化工分离过程是化学工程的1个重要分支,从原料的精制,中间产物的分离,产品的提纯和废水、废气的处理都有赖于化工分离技术[1-2]。绝大多数反应过程的原料和反应所得到的产物都是混合物,需要利用体系中各组分物性的差别或借助于分离剂使混合物得到分离提纯(见图1)。化工分离过程的应用遍及能源、资源、环保、生物、新材料等领域,无论是石油炼制、塑料化纤、湿法冶金、同位素分离,还是生物制品精制、纳米材料制备、烟道气脱硫和化肥生产等等都离不开化工分离过程。它往往是获得合格产品、充分利用资源和控制环境污染的关键步骤。 图1 化工分离过程的重要性 分离过程是耗能过程,设备数量众多,规模巨大。在1 000万t常、减压和100万t乙烯等特大型石化装置中,塔径10m以上的分离塔比比皆是。随着新产品的不断出现,对分离过程提出了越来越高的要求。例如医用的O18稳定同位素分离需要约2 000个理论级。化工分离过程通常占过程工业设备费和操作费的40%~70%[3],对过程的技术经济指标和产品的成本具有重要的影响。随着节能减排要求的提高

萃取精馏实验装置操作说明-

萃取精馏实验装置操作说明- 萃取精馏实验装置操作说明 一、前言 精馏是化工工艺过程中重要的单元操作,是化工生产中不可缺少的手段, 而萃取精馏是精馏操作的特殊形式,只有在普通精馏不能获得分离时才使用。其基本原理与精馏相同,也是利用组分的汽液平衡关系与混合物之间相对挥发度的差异,只不过要加入第三组分形成难挥的混合物,将沸点相近或有共沸组成的物质在塔内上部接触,使易挥发组分(轻组分)逐级向上提高浓度;而不易挥发组分(萃取剂与重组分)则逐级向下从塔底流出。若采用填料塔形式,对二元组分来说,则可在塔顶得到含量较高的轻组分产物,塔底得到萃取剂含量较高的重组分产物,当然,也与萃取剂的选择有关。 本装置是根据用户提出的技术指标而制作的、采用了双塔连续操作的流程,萃取剂能连续回收使用,加料采用了蠕动泵和双缸柱塞泵,同时,对萃取剂分离采用真空操作,能够取得较好的放大数据,可供有机化工、石油化工、精细化工、生物制药化工等专业部门的科研、教学、产品开发方面使用。用于有机物质的精制分离时,具有操作稳定、塔效率高、数据重现性好等优点。此外,它还可装填不同规格、尺寸的填料测定塔效率,也能用于小批量生产或中间模拟试验。当填装小尺寸的三角型填料或θ网环填料时,可进行精密精馏。装置结构紧凑,外形美观,控制仪表采用先进的智能化形式。 对一般教学用的常减压精馏、反应精馏、共沸精馏、萃取精馏玻璃塔来说只有一节塔体,它们在塔壁不同位置开有侧口,可供改变加料位置或作取样口用。塔体全部由玻璃制成,塔外壁采用新保温技术制成透明导电膜,使用中通电加热保温以抵消热损失。在塔的外部还罩有玻璃套管,既能绝热又能观察到塔内气液流动情

分离工程中重要分离技术的进展与展望

分离工程中重要分离技术的进展与展望 摘要:简要介绍了分离工程产生和发展历史,各主要分离技术的发展现状, 研究前沿以及未来的发展方向.分离工程过去在化学工程以及相近产业的发展中起了重要作用,也将在现在和未来推动现代化工和相关工业的发展,并在高新技术领域的发展中大显身手.评述 10余年来在分离科学与工程领域的进展,这些领域包括:萃取分离(反胶团萃取,双水相萃取,液膜萃取,,超临界萃取,凝胶萃取,胶团萃取)。吸附蒸馏,膜分离,反应强化分离等方面的研究简况。 关键词:分离技术,新进展,展望 引言:化工分离技术是一个面对经济建设,广泛应用于多种工业的技术基础学科,是过程工程的核心技术之一。化工、石化,冶金、医药等所谓“过程工业”一般均包括三大工序,即原料准备、反应与分离。分离即负担反应后未反应物料与产物的分离,也包括目标产物与副产物间的分离、排放到环境中的废气、水、固体物料与有用产物的分离,以及原料中杂质的分离等等。随着高新技术的发展,成千上万种新的化合物被发现、设计和合成,尤其是产物的多样化及深度加工,环境保护的严格标准的实施,都对化工分离技术提出了新的任务和更高要求。例如,大部分生物技术产品以低浓度存在于水溶液中,需要发展在低温条件下的高效分离并富集的方法。随着关系到国计民生和战略储备的矿产资源的枯竭,处理贫矿,复杂矿和回收利用二次资源将成为必然趋势,从而对分离技术的要求越来越高。此外,包括我国在内的世界各国对环境保护日益重视,对废气,废水,废渣的排放制定出越来

越严格的标准。国外报道,过程工业总投资的50%~90%用于分离设备,操作费用60%以上用于分离工序。因此国内外均对分离科学与工程的发展十分重视。随着化学工程科学的发展,不仅其共性应用基础研究扩展为过程工程,而且将研究目标提升为产品工程。分离技术的研究是过程工程的关键性和前沿性的项目之一。把握分离过程的基本规律,吸取和发展化工学科交叉的特点,拓宽分离技术的辐射领域,是分离科学与技术发展的根本所在。近年来,国外对分离科学、分离工艺和分离工程的研究十分活跃,除一般的化工、化学杂志不断介绍分离方面的研究成果外,国际性的分离专业杂志不下十余种。每年还举办大量的各种分离技术的国际会议。因此,对关系到我国“过程工业”如化学工业、石油化工、环境工程、生物化工等国家支柱产业21世纪初在国际上竞争力和综合实力的若干分离技术中带有共性、基础性的课题进行深层次的研究,在逐步进行传统分离技术与设备的根本性的改造的同时,研究和开创具有高效性、针对性和无害化的新型的分离技术,完善分离技术的工程开发,形成知识产权,科学地发展新的分离过程、分离方法、分离体系及分离设备,促进我国高新技术产业的可持续发展,提高我国工业整体水平,实现整个“过程工业”的现代化,是亟待解决的带有战略性的研究任务。十年来,我国以萃取分离、精馏分离与膜分离等为代表的分离科学与技术的研究取得了较大的成就,扩大了国际上的影响,形成的科技成果己在国民经济的诸多领域中得到广泛应用,取得了十分显著的经济效益和社会效益。本文重点就这些方面的新进展进行评价和介绍。

共沸精馏技术研究及应用进展

共沸精馏技术研究及应用进展 共沸现象是指一定压力下某一溶液沸腾时,溶液温度、液相组成和汽相组成始终保持不变的现象。在混合时,混合物的共沸点高于或低于混合物中任一种组分沸点,分别称为最高共沸物或最低共沸物。当出现共沸现象时,采用普通精馏方法无法达到分离的目的,此时我们可采用共沸精馏、萃取精馏或变压精馏等特殊精馏方法。其中共沸精馏就是向待分离体系中加入新组分(共沸剂),共沸剂能与原有体系中的一个或多个组分形成新的共沸物,且这种新共沸物的挥发度显著地高于或低于原有各组分的挥发度,并且新共沸物中各组分的含量与原料液组成不同,可采用普通精馏方法予以分离。 1、共沸精馏的特点 (1)共沸精馏用的共沸剂必须与待分离组分的一个或多个形成共沸物,共沸剂的选择范围相对较小; (2)共沸精馏的共沸剂大多数都从塔顶蒸出,消耗热能较大,通常只有当与共沸剂形成共沸物的组分在原料中含量较少时,共沸精馏的操作才比较经济; (3)共沸精馏可用于连续操作也可用于间歇操作; (4)在相同压力下操作,共沸精馏的操作温度较低,比其它精馏方式更适于分离热敏性物料。 2、共沸精馏的分类 根据共沸剂与原组分形成的新共沸物是否能分离为不互溶的两个液相,可将共沸精馏分为非均相共沸精馏和均相共沸精馏。与均相共沸精馏相比,非均相间歇共沸精馏可以更加方便的控制回流比,具有设备简单,通用性强的特点。 3、共沸剂的选择 共沸剂的选择对共沸精馏分离过程的效果影响非常大。国外对共沸剂的选择有许多报道,都提出如何选择共沸剂。根据溶液形成氢键的强弱将溶液分成5类,以各类液体混合后对拉乌尔定律的偏差作为选择共沸剂的初步依据。

提出了完整的关于最低及最高共沸物和近沸点精馏中共沸剂的选择方法。因此,共沸剂的选择主要有以下几个原则: (1)至少与料液中一个或两个(关键)组分形成两元或三元最低共沸物,而且希望此共沸物比料液中各纯组分的沸点或原来的共沸点低10℃以上;一般来说,从塔顶馏出的二元或三元共沸物经过冷凝冷却后,如果能形成非均相液体,则分离效率高,溶剂回收简单; (2)共沸物中共沸剂的相对含量少,即每份共沸剂能带走较多的原组分,这样共沸剂用量少,操作也较为经济; (3)共沸剂应易于回收和分离,不仅希望能够形成非均相共沸物,减少分离共沸物的操作等;而且要便于回收重复利用; (4)如果从回收塔顶部回收共沸剂,则共沸剂应具有较小的汽化潜热,以节省能耗; (5)共沸剂不能与原料的任一组分发生反应,具有热稳定性好,廉价,毒性小,来源广,腐蚀性小等特点。 4、共沸精馏技术的应用研究 用间歇共沸精馏分离乙酸乙酯和正己烷的混合物,实验采用丙酮作为共沸剂,实验结果表明:出现乙酸乙酯和正己烷最高收率是在丙酮和正己烷质量比为1.15时,乙酸乙酯收率为73.89%,正己烷收率为75.15%。 用间歇共沸精馏法,采用乙酸异丙酯作为体系的共沸剂来分离乙二醇单甲醚一水混合物,实验研究表明:调节共沸剂与水的质量比在2~2.5这一区间内,就能够一次性回收90%以上乙二醇单甲醚的量。 使用Aspen Plus软件对三氟化氮一四氟化碳共沸体系进行模拟,选用氯化氢作为共沸剂,简单快捷的找到精馏操作的最优参数,为实际生产提供参考。 采用醋酸乙烯酯为共沸剂,使用Aspen Plus软件对共沸精馏分离丙炔醇一丁炔二醇一水进行了模拟

《生物产品分离分析技术》教学大纲

《生物产品分离分析技术》教学大纲 Separation and Analysis of Bioproducts 课程编码:27A11417 学分: 4.0 课程类别:专业必修课 计划学时:64 其中讲课:32 实验:32 适用专业:生物技术 推荐教材:顾觉奋主编,《分离纯化工艺原理》,中国医药科技出版社,2002。 参考书目:1. 欧阳平凯编著,《生物分离原理及技术》,化学工业出版社,2010。 2. 严希康主编,《生物物质分离工程》,化学工业出版社,2010。 3. 俞俊棠主编,《新生物工艺学(下)》,化学工业出版社,2002。 4. 李俊玲主编,《生物产品分离分析技术实验》,济南大学出版社,2016。 课程的教学目的与任务 通过本课程的学习,使学生了解生物体系的基本特点及对分离过程的特殊要求,掌握生物物质的分离纯化方法的基本原理、工业操控方式与操控因素及其适用性。培养学生结合基础知识分析解决试验研究和工业化生产可能遇到的根本问题的能力。通过对本课程的学习,能使学生针对不同产品的特性,较好地运用各种分离技术来设计合理的提取、精制的工艺路线,并能从理论上解释各种现象,提高分析问题和解决问题的能力。 课程的基本要求 通过本课程的学习,使学生了解生物体系的基本特点及对分离过程的特殊要求,掌握生物物质的分离纯化方法的基本原理、工业操控方式与操控因素及其适用性。培养学生结合基础知识分析解决试验研究和工业化生产可能遇到的根本问题的能力。 各章节授课内容、教学方法及学时分配建议(含课内实验) 第一章:绪论建议学时:2 [教学目的与要求] 掌握生物分离工程在生物工程领域的地位,生物分离过程的特点以及生物分离过程的分类。 [教学重点与难点] 准确理解生物分离过程的特点。难点:正确理解生物分离过程与普通化工产品分离的区别,准确理解生物分离过程的特点。 [授课方法] 以课堂讲授为主,课堂讨论和课下自学为辅。 [授课内容] 1.生物分离工程的历史及应用;2.生物分离过程的特点。 第二章:发酵液的预处理和固液分离建议学时:4

萃取精馏

萃取精馏及其应用 摘要:萃取精馏在近沸点物系和共沸物的分离方面是很有潜力的操作过程。萃取精馏是一种特殊的精馏方法。以改变塔内需要分离组分的相对挥发度。选择合适的溶剂可以增强分离组分之间的相对挥发度, 从而可以使难分离物系转化为容易分离的物系。本文对萃取精馏的优缺点进行阐述以及提出对缺点的改进并对萃取精馏的前景进行展望。 Extractive distillation in nearly boiling material and separating azeotrope is very potential operation process. Extractive distillation is a kind of special rectification method. In order to change the tower requires the separation of components of the relative volatility of separation. This paper expounds the advantages and disadvantages of extract :extractive distillation extraction agent advantages and disadvantages application prospect Extractive distillation in nearly boiling material and separating azeotrope is very potential operation process. Extractive distillation is a kind of special rectification method. In order to change the tower requires the separation of components of the relative volatility of separation. This paper expounds the advantages and disadvantages of extractive distillation and put forward to the disadvantages of improvement and Prospect of extractive distillation. Abstracr :Extractive distillation in nearly boiling material and separating azeotrope is very potential operation process. Extractive distillation is a kind of special rectification method. In order to change the tower requires the separation of components of the relative volatility of separation. This paper expounds the advantages and disadvantages of extractive distillation and put forward to the disadvantages of improvement and Prospect of extractive distillation. Key words : extractive distillation extraction agent advantages and disadvantages application prospect 一、萃取精馏的简介 萃取精馏:向精馏塔顶连续加入高沸点添加剂,改变料液中被分离组分间的相对挥发度,使普通精馏难以分离的液体混合物变得易于分离的一种特殊精馏方法。 萃取精馏的原理:若采用普通精馏的方法进行分离,将很困难,或者不可能。对于这类物系,可以采用特殊精馏方法,向被分离物系中加入第三种组分,改变被分离组分的活度系数,增加组分之间的相对挥发度,达到分离的目的。如果加入的溶剂与原系统中的一些轻组分形成最低共沸物,溶剂与轻组分将以共沸物形式从塔顶蒸出,塔底得到重组分,这种操作称为共沸精馏;如果加入的溶剂不与原系统中的任一组分形成共沸物,其沸点又较任一组分的沸点高,溶剂与重组分将随釜液离开精馏塔,塔顶得到轻组分,这种操作称为萃取精馏。 萃取精馏的流程:由于溶剂的沸点高于原溶液各组分的沸点,所以它总是从塔釜排出的。为了在塔的绝大部分塔板上均能维持较高的溶剂浓度,溶剂加入口一定要在原料进入口以上。但一般情况下,它又不能从塔顶引入,因为溶剂入口以上必须还有若干块塔板,组成溶剂回收段,以便使馏出物从塔顶引出以前能将其中的溶剂浓度降到可忽略的程度。溶剂与重组分一起自萃取精馏塔底部引出后,送入溶剂回收装置。一般用蒸馏塔将重组分自溶剂中蒸出,并送回萃取精馏塔循环使用。一般,整个流程中溶剂的损失是不大的,只需添加少量新鲜溶剂补偿即可。

高等分离过程课程作业

高等分离过程课程作业 乙醇与水体系分离的研究 学生姓名卢贝贝 学号2014118008 所属学院化学化工学院 专业化学工艺 日期2014年11月

乙醇与水体系分离的研究 摘要:无水乙醇是一种重要的基本化工原料和溶剂,由于乙醇的浓度不同,对应的乙醇—水形成共沸体系无也不能用同一种方法来分离,必须通过其他途径实现无水乙醇的分离。目前工业上采用共沸精馏、萃取精馏、溶盐精馏、膜分离等方法制备无水乙醇。本文将采用这些方法研究在乙醇—水体系中的分离作用,并对其进行分析,筛选出最优的分离方法。 关键词:乙醇水共沸精馏萃取精馏溶盐精馏膜分离 引言 无水乙醇为无色澄清液、有灼烧味、易流动、极易从空气中吸收水分,能与水和氯仿、乙醚等多种有机溶剂以任意比例互溶。能与水形成共沸混合物(含水4.43%),熔点-114.1℃。沸点78.5℃。易燃。乙醇是重要的有机溶剂,广泛用于医药、涂料、卫生用品、化妆品、油脂等各个方法,占乙醇总耗量的50%左右。乙醇是重要的基本化工原料,用于制造乙醛、乙酸乙酯、乙酸、氯乙烷等,并衍生出医药、染料、涂料、香料、合成橡胶、洗涤剂、农药等产品的许多中间体,其制品多达300种以上,乙醇作为化工产品中间体的用途正在逐步下降,75%的乙醇水溶液具有强杀菌能力,是常用的消毒剂。经过专门精制的乙醇也可用于制造饮料。与甲醇类似,乙醇可作能源使用。有的国家已开始单独用乙醇作汽车燃料或掺到汽油(10%以上)中使用以节约汽油。水乙醇的生产方法大致有以下几种: 氧化钙脱水法、共沸精馏、吸附精馏、渗透汽化、膜分离、萃取精馏法和真空脱水法等[1]。目前, 实际生产中较成熟的方法是共沸精馏和萃取精馏, 这两种分离方法多以连续操作的方式出现。 1 国内外的研究分析 1.1萃取精馏法分离乙醇与水 萃取精馏是向精馏塔顶连续加入高沸点添加剂,改变料液中被分离组分间的相对挥发度,使普通精馏难以分离的液体混合物变得易于分离的一种特殊精馏方法。分批萃取精馏( BED)可以同时具备分批精馏与萃取精馏两者

当前萃取分离技术的研究应用与进展

当前萃取分离技术的研究应用与进展 摘要:近年关于萃取技术研究进展很快,各种萃取方法层出不穷但各有其优缺点,现通过对几种比较流行的萃取方法进行总结归纳,并对未来萃取分离技术进展的特点做些分析。随着科技水平发展以及对于各种科研需要关于萃取技术这方面的研究不断更新,新的方法不断研究出来,本文简单归纳介绍了以下几种常用方法:1.固相萃取技术2.亚临界水萃取技术3.液相微萃取技术。另外补充说明近年来我国稀土工业发展中萃取技术的应用情况和未来的发展趋势。 关键词:萃取分离;稀土;发展趋势 引言: 传统的提取物质中有效成分的方法复杂,而且产品的纯度不高易含有有毒有害物质在其中。萃取分离法是一种新型的分离技术,是将样品中的目标化合物选择性的转移到另一相中或选择性的保留在原来的相中,从而使目标化合物与原来的复杂基体相互分离方法。通过萃取分离这个重要单元操作步骤,可以达到产品提纯率高,纯度好,能耗低等优点。这种方法不仅在化工医药领域得到广泛应用,而且在食品,烟草,香料,稀土行业得到极大认可。随着科技的更新和进步,萃取分离技术也在不断的改进优化,新型的萃取分离技术不断出现并完善,这项技术在未来具有广阔的发展前景。 1.固相萃取技术 固相萃取(Solid Phase Extraction,SPE)技术基于液相色谱原理,

可近似看作一个简单的色谱过程16t。原理是利用固体吸附剂将液体样品中的目标化合物吸附,与样品的基体和干扰化合物分离,然后再用洗脱液洗脱或加热解吸附,达到分离和富集目标化合物的目的171。固相萃取可分为在线萃取和离线萃取。前者萃取与色谱分析同步完成,而后者萃取与色谱分析分步完成。两者在原理上是一致的。 固相萃取技术在样品处理中的作用分两种:一是净化,二是富集,这两种作用可能同时存在。 固体萃取和液-液萃取相比,其长处在于方便和消耗试剂少,短处在于批次间的重复性难以保证。出现这种情况的原因在于:液体试剂的重复性好,只要其纯度可靠,不同年代的产品的物理化学性质都是可靠的。而固体萃取剂就算保证了纯度外,还存在着颗粒度的差异,外形的差异等液体试剂不存在的且难以衡量的因素,不同年代不同批号的萃取性质可能会有较大的区别。 从理论上和厂家宣传来看,固相萃取应该在色谱分析的前处理上得到很好的应用:有机溶剂用得很少,可批量处理样品,既可富集,又能除杂质,给人印象是前处理的革命性进步。然而现实情况,起码在国内,虽然推广了多年,实际应用还是相当有限。 固相萃取技术很容易掌握,目前利用它开展的工作尚有一定的局限性。主要使用在分析挥发性、半挥发性物质,因此文献报道较多与气象色谱的联用有关,与液相色谱和毛细管电泳联用的技术尚不很成熟,文献报道较少。虽然固相微萃取技术近几年刚刚起步,但由于具有方法简单,无需试剂,提取效果好,变异系数小安等诸多优点已在

相关文档
最新文档