陶瓷材料在军事及各方面的用途与前景

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

陶瓷材料在军事及各方面的用途与前景

新材料,又称先进材料(Advanced Materials),是指新近研究成功的和正在研制中的具有优异特性和功能,能满足高技术需求的新型材料。人类历史的发展表明,材料是社会发展的物质基础和先导,而新材料则是社会进步的里程碑。

材料技术一直是世界各国科技发展规划之中的一个十分重要的领域,它与信息技术、生物技术、能源技术一起,被公认为是当今社会及今后相当长时间内总揽人类全局的高技术。材料高技术还是支撑当今人类文明的现代工业关键技术,也是一个国家国防力量最重要的物质基础。国防工业往往是新材料技术成果的优先使用者,新材料技术的研究和开发对国防工业和武器装备的发展起着决定性的作用。

军用新材料是新一代武器装备的物质基础,也是当今世界军事领域的关键技术。而军用新材料技术则是用于军事领域的新材料技术,是现代精良武器装备的关键,是军用高技术的重要组成部分。世界各国对军用新材料技术的发展给予了高度重视,加速发展军用新材料技术是保持军事领先的重要前提。

军用新材料按其用途可分为结构材料和功能材料两大类,主要应用于航空工业、航天工业、兵器工业和船舰工业中。

工程陶瓷又称为结构陶瓷,因其具有硬度高、耐高温、耐磨损、耐腐蚀以及质量轻、导热性能好等优点,而得到了广泛的应用。但是,工程陶瓷也存在着某些缺陷,主要表现为它的脆性(裂纹)、均匀性差以及可靠性低等。而在纳米陶瓷材料的显微结构中,晶粒、晶界以及它们之间的结合都处在纳米水平,使得材料的强度、韧性和超塑性大幅度提高,克服了工程陶瓷的许多不足,并对材料的力学、电学、热学、磁学、光学等性能产生重要影响,从而为工程陶瓷的应用开拓了新领域。

一纳米技术与纳米陶瓷

1 纳米技术与纳米复合材料

纳米技术是20 世纪90年代出现的一门新兴技术,它是在0.10- 100nm的尺度空间内,研究电子、原子和分子的运动规律和特性。纳米材料研究是目前材料科学研究的一个热点, 其相应发展起来的纳

米技术,被公认为21世纪最有前途的科研领域。在纳米材料中,纳米晶粒中的原子排列已不能处理成无限长程有序,通常大晶体的连续能带分裂成接近分子轨道

的能级;高浓度晶界及晶界原子的特殊结构,导致材料的力学性能、磁性、光学性能乃至热力学性能的改变。纳米相材料与普通的金属、陶瓷和其它固体材料都是由同样的原子组成,只不过这些原子排列成了纳米级的原子团,成为组成这些新材料的结构粒子或结构单元。纳米材料具有常规粗晶粒材料所不具备的奇异特性和反常特性,例如纳米铁材料的断裂应力比一般铁材料高12倍;纳米相铜的强度比普通的铜坚固 5倍,而且硬度随颗粒尺寸的减小而增大。利用纳米技术开发的纳米陶瓷材料,就是由纳米级显微结构组成的新型陶瓷材料,是在纳米长度范围内(1-100 nm) 的纳米复合材料。

2纳米材料的特性

2.1 表面效应

纳米材料的表面效应是指纳米粒子的表面原子数与总原子数之比随粒径的变小而急剧增大后,所引起的性质上的变化。当粒径在10 nm以下时,将显著增加表面原子的比例。当粒径降到1 nm 时,表面原子的比例达到90 %以上,原子几乎全部集中到纳米粒子的表面。由于纳米粒子表面原子数的增多,表面原子的配位数不足和高的表面能,使这些原子易与其它原子相结合而稳定下来,故具有很高的化学活性。

2.2 体积效应

由于纳米粒子的体积极小,所包含的原子数很少,相应地质量极小。因此,许多现象就不能用通常由无限个原子组成的块状物质的性质加以说明, 这种特殊的现象称之为体积效应。

2.3量子尺寸效应

当纳米粒子的尺寸下降到某一值时,金属粒子界面附近电子能级由准连续变为离散能级;并且纳米半导体微粒存在不连续的分子轨道能级使得能隙变宽的现象,称为纳米材料的量子尺寸效应。

3 纳米陶瓷粉体

纳米陶瓷粉体是介于固体与分子之间的具有纳米尺寸( 1-100 nm) 的亚稳

态中间物质。随着粉体的超细化,其表面电子结构和晶体结构发生变化,产生了

块状材料所不具有的特殊的效应。具体地讲,纳米粉体材料具有以下优异的性能:

( 1)纳米陶瓷材料具有极小的粒径、大的比表面积和高的化学性能, 可以降低

材料的烧结致密化程度、节约能源;

( 2)使材料的组成结构致密化、均匀化,改善陶瓷材料的性能,提高其使用可靠性;

( 3)可以从纳米材料的结构层次( 1- 100 nm)上控制材料的成分和结构,有利于充分发挥陶瓷材料的潜在性能,而使纳米材料的组织结构和性能的定向设计成为可能。另外,陶瓷是由陶瓷原料成型后烧结而成的,而且陶瓷粉料的颗粒大小决

定了陶瓷材料的微观结构和宏观性能。如果粉料的颗粒堆积均匀、烧成收缩一

致且晶粒均匀长大,则颗粒越小产生的缺陷就越小,所制备的材料的强度就相应

越高,这就可能出现一些大颗粒材料所不具备的独特性能。

4 纳米陶瓷的制备

纳米陶瓷的制备工艺主要指纳米粉体的制备、成型和烧结,制造纳米陶瓷则

主要包括纳米陶瓷粉的制取和致密化成块状纳米材料的制备。目前,世界上制备纳米陶瓷粉体的方法多种多样,但应用较广且较成熟的主要有气相合成和凝聚相合成两种以及其它一些方法。

4.1气相合成法

气相合成法主要有气相高温裂解法、喷雾转化工艺和化学气相合成法, 这些方法具有较高的实用性和适用性。化学气相合成法可以认为是惰性气体凝聚法

的一种变型,它既可以制备纳米非氧化物粉体,也可以制备纳米氧化物粉体。这

种合成法增强了低温下的可烧结性,并且有相对高的纯净性和高的表面及晶粒边界纯度。原料在坩埚中经加热直接蒸发成气态,以产生悬浮微粒或烟雾状原子团。原子团极限粒径将随蒸发速率的加大和惰性气体原子量的增大而增加;原子团的平均粒径可通过改变蒸发速率以及蒸发室内的惰性气体的压强来控制, 粒径可

小至3-4 nm。这是制备纳米陶瓷最有希望的途径之一。

4.2 凝聚相合成法

相关文档
最新文档