图像锐化方法的比较

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图像的锐化

摘要:图像平滑往往使图像中的轮廓变得模糊,为了减少这类不利影响,这就需要利用图像锐化技术,使图像的边缘变的清晰。本文分析了图像锐化方法中的梯度算子法和二阶导数算子法的各自特点,其中梯度算子法主要是Roberts 梯度算子法、Prewitt 梯度算子法、Sobel 算子法;二阶导数算子法为Laplacian 算子法,并通过编程对一张实际图片进行了试验对比,结果证明Laplacian 算子法锐化效果最好。

引言 图像平滑往往使图像中的边界、轮廓变得模糊,为了减少这类不利效果的影响,这就需要利用图像锐化技术,使图像的边缘变的清晰。图像锐化处理的目的是为了使图像的边缘、轮廓线以及图像的细节变的清晰,经过平滑的图像变得模糊的根本原因是因为图像受到了平均或积分运算,因此可以对其进行逆运算(如微分运算)就可以使图像变的清晰。从频率域来考虑,图像模糊的实质是因为其高频分量被衰减,因此可以用高通滤波器来使图像清晰。图像锐化处理的主要技术体现在空域和频域的高通滤波,而空域高通滤波主要用模版卷积来实现。

1、梯度算子法

在图像处理中,一阶导数通过梯度来实现,因此利用一阶导数检测边缘点的方法就称为梯度算子法。梯度值正比于像素之差。对于一幅图像中突出的边缘区,其梯度值较大;在平滑区域梯度值小;对于灰度级为常数的区域,梯度为零。

1.1、Roberts 梯度算子法

Roberts 梯度就是采用对角方向相邻两像素之差,故也称为四点差分法。对应的水平和垂直方向的模板为:

标注

的是当前像素的位置(i,j)为当前像素的位置,其计算公式如下:

⎥⎦⎤⎢⎣⎡-=∙

1001x G ⎥⎦⎤⎢⎣⎡-=∙0110y G ∙

特点:用4点进行差分,以求得梯度,方法简单。其缺点是对噪声较敏感,常用于不含噪声的图像边缘点检测。梯度算子类边缘检测方法的效果类似于高通滤波,有增强高频分量,抑制低频分量的作用。这类算子对噪声较敏感,而我们希望检测算法同时具有噪声抑制作用。所以,下面给出的平滑梯度算子法具有噪声抑制作用。

利用Roberts 梯度算子法对灰度数字图像lena.bmp 进行边缘检测程序代码如下:

I=imread('C:\Documents and Settings\Administrator\桌面\hehe.jpg');

[H,W]=size(I);

M=double(I);

J=M;

for i=1:H-1

for j=1:W-1

J(i,j)=abs(M(i,j)-M(i+1,j+1))+abs(M(i+1,j)-M(i,j+1));

end;

end;

subplot(1,2,1);imshow(I);title('原图');

subplot(1,2,2);imshow(uint8(J));title('Roberts 处理后');

1.2、Prewitt 梯度算子法(平均差分法)

)

1,(),1()1,1(),(),(+-++++-=j i f j i f j i f j i f j i G

因为平均能减少或消除噪声,Prewitt 梯度算子法就是先求平均,再求差分来求梯度。水平和垂直梯度模板分别为:

利用检测模板可求得水平和垂直方向的梯度,再通过梯度合成和边缘点判定,就可得到平均差分法的检测结果。

利用Prewitt 算子对灰度数字图像lena.bmp 进行边缘检测,程序代码如下: I=imread('C:\Documents and Settings\Administrator\桌面\数字图象处理实验\haha.jpg');

[H,W]=size(I);

M=double(I);

J=M;

for i=2:H-1

for j=2:W-1

J(i,j)=abs(M(i-1,j+1)-M(i-1,j-1)+M(i,j+1)-M(i,j-1)+M(i+1,j+1)-M(i+1,j -1))+abs(M(i+1,j-1)-M(i-1,j-1)+M(i+1,j)-M(i-1,j)+M(i+1,j+1)-M(i-1,j+1));

end;

end;

subplot(1,2,1);imshow(I);title('原图');

subplot(1,2,2);imshow(uint8(J));title('Prewitt 处理后');

⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=∙

101101101x d ⎥⎥⎥⎦

⎤⎢⎢⎢⎣⎡---=∙111000111y d

1.3、Sobel 算子法(加权平均差分法)

Sobel 算子就是对当前行或列对应的值加权后,再进行平均和差分,也称为加权平均差分。水平和垂直梯度模板分别为:

Sobel 算子和Prewitt 算子一样,都在检测边缘点的同时具有抑制噪声的能力,检测出的边缘宽度至少为二像素。由于它们都是先平均后差分,平均时会丢失一些细节信息,使边缘有一定的模糊。但由于Sobel 算子的加权作用,其使边缘的模糊程度要稍低于程度要稍低于Prewitt 算子。

利用Sobel 边缘检测算子法对灰度数字图像lena.bmp 进行边缘检测,程序代码如下:

I=imread('C:\Documents and Settings\Administrator\桌面\ZZQ.jpg');

[H,W]=size(I);

M=double(I);

J=M;

for i=2:H-1

for j=2:W-1

y

x S S j i G +=),(⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=∙

10120210

1x S ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=∙121000121y S

相关文档
最新文档