智能小车环保公交车系统

智能小车环保公交车系统
智能小车环保公交车系统

目录

一、方案论证 (1)

(一)方案的选择与比较 (1)

(二)系统组成框图 (3)

二、设计实现 (4)

(一)硬件电路图 (4)

(二)软件设计 (5)

三、调试与应用 (7)

(一)测试仪器清单 (7)

(二)功能测试 (7)

四、结束语 (7)

参考文献 (8)

附录:程序代码 (8)

智能小车环保公交车系统

摘要:本系统采用STC89C52单片机为控制核心,设计了具有自动寻迹、到站检测、自动靠站、语音播报、液晶显示等功能的智能公交车系统,为充分体现当前的环保需求,本系统采用了非电池电源进行供电。在系统设计中运用了红外检测、大容量电容电池、ISD4004语音播报系统、LCD12864液晶显示等技术,具有一定的先进性。

关键词:智能公交车;STC89C52;自动寻迹;语音播报

一、方案论证

(一)方案的选择与比较

1、控制模块

方案一:采用凌阳61板,它是16位的控制器,体积小,驱动能力高、结果简单、中断处理能力强,尤其适用于语音处理和识别部分,但价格比较贵。

方案二:STC89C52是一种低电压、高性能的COMS 8为单片机,片内8K程序存储器是FLASH工艺的,这种工艺的存储器用户可以用电的方式瞬间擦除、改写,对开发设备的要求很低,开发时间也大大缩短。且价格比较低廉,市场供应充足。

从价格方面考虑,我们选择方案二。

2、电机选择

方案一:直流电机。直流电机的控制方法比较简单,只需给电机的两根控制线加上适当的电压即可使电机转动起来,电压越高则电机转速越高。对于直流电机的速度调节,可以采用改变电压的方法,也可采用PWM调速方法。PWM调速就是使加在直流电机两端的电压为方波形式,通过改变方波的占空比实现对电机转速的调节。

方案二:步进电机。由于其转过的角度可以精确的定位,可以实现小车前进路程和位置的精确定位。虽然采用步进电机有诸多优点,步进电机的输出力矩较低,随转速的升高而下降,且在较高转速时会急剧下降,其转速较低,不适用于小车等有一定速度要求的系统。所以我们放弃了本方案。

综上所述,我们选择方案一。

3、电机驱动模块

方案一:采用专用芯片L298N作为电机驱动芯片。L298N是一个具有高电压大电流的全桥驱动芯片,它相应频率比较高,一片L298N可以分别控制两个直流电机,而且还带有控制使能端。且可用PWM进行调速,用该芯片作为电机驱动,操作方便,稳定性好,性能优良。

方案二:采用H型全桥式驱动电路,由分立元件构成电机驱动电路,很方便的实现直流电机的四象限运行,分别对应正转、正转制动、反转、反转制动。其结构简单,价格低廉,但是性能不稳定,所以我们放弃用分立元件H桥作为驱动电路。

综上所述,我们选择方案一。

4、寻迹模块

方案一:采用反射式红外发射—接收对管,检测路面的黑色引导线。当发出的红外线照到白线上时,光线被反射,接收管接收到光线的照射,输出为低电平;当发出的红外线照到黑线上时,光线被吸收,接收管接收不到光线,输出高电平。且红外对管对黑线的识别率较高,且不易受外界光线的影响,能可靠的实现线路检测。

方案二:采用光敏电阻实现对黑线引导线的识别。此方案电路结构简单,成本较低,但光敏电阻极易受外界光线的影响,容易造成误判,使小车失去控制。所以我们放弃本方案。

综上所述,我们选择方案一。

5、站台检测模块

方案一:采用超声波传感器,反应速度灵敏,距离远,受外界干扰小,但外界电路复杂。所以我们放弃了选择超声波传感器。

方案二:采用成品红外发射接收探头,其使用方便,实现简单。

综上所述,我们选择方案二。

6、语音模块

方案一:选择专门的语音存储芯片ISD1420,通过单片机进行录放音的控制。用这种方法比较简单方便,但地址模式占用的IO端口比较多,存储空间较小,智能存储总计20S的语音,无法进行语音识别。为了更好的识别语音功能,所以我们放弃了本方案。

方案二:选用ISD4004芯片实现语音播报,特点是记录声音没有段长度限制,并且声音记录不要A/D转换和压缩的,其采用FLASH作为存储介质,不要电源可保持数据长,可重复使用多次。

综上所述,我们选择方案二。

智能小车的路径识别问题

智能小车的路径识别问题 摘要:智能小车路径识别技术是系统进行控制的前提,介绍了路径识别技术的几种分类及相应的优缺点,通过分析得出面阵CCD摄像更适合作为采集信息的工具。 关键词:智能小车;路径识别;面阵CCD摄像器件 Abstract: Smart car’s path recognition technology is the premise of the control system, this paper introduces the path of several classification and recognition technology, through the analysis of the advantages and disadvantages of the corresponding to array CCD camera is more suitable for gathering information as the tool. Key words:smart car; Path recognition; Surface array CCD camera device 0 引言:为培养大学生的自主创新设计的能力,各大高校都设置了智能车比赛,智能小车 行驶在给定的白色路面,由中间的黑色轨迹线引导,实现自主循迹功能。实现该 功能的小车主要由电源模块、循迹模块、单片机模块、舵机模块、后轮电机驱动 模块组成。路径模块一般由ATD模块,外围芯片和电路,与路面信息获取模块 组成,要能够快速准确得进行路径识别检测及相关循迹算法研究,本文就这两个 方面进行相应的分析和介绍。 1 光电传感器 1.1 反射式红外发射接收器 半导体受到光照时会产生电子-空穴对,是导电性能增强,光线愈强,阻值愈低。这种光照后电阻率变化的现象称为光电导效应[1],用于路径检测的反射式红外光电传感器基于此原理设计。该传感器一般由一个红外线发射二极管和一个光电二极管组成,可以发射并检测到反射目的光线。不同颜色的物体对光的反射率不同,当发射出的红外光对准黑色物体时,反射的红外线很少,光电二极管不能导通,反之,当对准白色物体时,光电二极管导通[2]。系统的单片机接收到光电二极管的信息根据相应的算法分析出小车此时的位置及位置偏离度,进而控制小车的方向和速度。 光电式传感器是通过对光的测量通过光电元件转化为电信号,并输出有效的输出量,由于外界光电因素的原因导致空间分辨率低是每个红外传感器存在的缺点,因此必须对原始传感器信息进行预处理,取相对值是一种有效解决外界干扰的方法,即将传感器未发射红外线时的A/D转换值进行提取,再与红外线时的转换值取相对值。文献[2]同时也提出了如何根据每个传感器的相对值与传感器位置推断出车模相对于黑色引导线的横向偏移位置。而文献[3]中所描述的方法与文献[2]有异曲同工之妙,文献[4][5]也对光电传感器的路径算法有详细科学的介绍。 1.2光敏电阻阵列传感器 假设光敏电阻阵列布置如图1所示,在智能小车的正前方布置n个光敏电阻( n=1,2,…, 11 ) ,在其质心位置依次紧密排列m个光敏电阻(m=1,2…7),首先测出路径黑色区域和白色区域的光敏电阻值,以通过d点的中心线的交点为原点建立坐标系,两排光敏之间的距离为K,光敏n和n+1且n>6或者(n和n-1且n<6)所测的值分别为黑色区域值和白色区域值,光敏6中心为智能小车的中心线通过点,而光敏d也为其通过点,连接这两点即为智能小车的中心线,则通过小车中心线并与黑色区域光敏值对应的光敏n与光敏m的连线即为所求路径信息。理论上讲,只要有两点就可以确定唯一的直线。

智能公交车管理系统功能需求1

1系统功能设计 1.1GIS功能 GIS功能模块包括地图服务、地图管理、检索、车辆实时显示、车辆跟踪功能、轨迹绘制、距离计算功能。 GIS模块数据流序列图 1.1.1地图服务子功能 支持shpfile和BingMap两种地图格式,shpfile地图实现放大、缩小、移动、距离测量、面积测量、矩形查询、点选取、全视图、鹰眼地图。BingMap实现放大、缩小、移动功能。如图3.3。

图3.3 1.1.2地图管理子功能 地图控制管理分为图层控制、注记设置、符号设置三方面功能,以便用户对于地图数据进行个性化配置. 3.1.2.1 图层控制 图层控制功能又可细化为三方面功能: (1)图层位置控制:包括图层上移、图层下移、图层置顶、图层置底。 (2)图层显示控制:图层图例、图层比例尺、图层显示、鹰眼显示。 (3)图层配置:加载图层、删除图层。

3.1.2.2 注记设置 注记设置功能,用户可设置注记显示、注记比例尺、注记字段、注记颜色和注记字体,并可预览注记样式。 3.1.2.3 符号设置 车辆显示设置,包括符号设置、名称属性设置两部分。可以根据车辆运行方向设定不同车辆符号。车辆名称可设置名称显示位置、显示字号、一般车辆、激活车辆等设置。

1.1.3检索子功能 实现车辆检索、线路检索、地名检索。 (1)车辆检索:关键字模糊匹配线路列表中所有车辆,地图上闪烁显示所选择的在线车辆,掉线车辆显示最近有效位置。 (2)线路检索:画出线路,并通过线路关键字模糊匹配该线路中所有车辆,显示在列表中;地图上闪烁显示所选择的在线车辆,掉线车辆显示最近有效位置。 (3)地名检索:关键字模糊匹配所有地物,在地图上闪烁显示所选择的地物。

智能公交车系统设计建设方案

智能公交车系统设计建设方案 智能公交车系统设计建设方案(此文档为word格式,下载后您可任意修改编辑!)

目录 第1章某某简介 (6) 第2章项目概述 (8) 2.1项目背景 (8) 2.2项目智能化需求 (8) 2.3功能目标 (10) 2.4基于中国移动4G(TD-LTE)系统设计的优势 (11) 2.4.1TD-LTE的基本概念 (11) 2.4.24G(TD-LTE)的技术特征 (12) 2.4.3基于4G(TD-LTE)系统设计的优势 (12) 第3章系统总体设计 (14) 3.1系统采用的关键技术 (14) 3.1.1B/S架构 (14) 3.1.2嵌入式实时操作系统技术 (14) 3.1.3GPRS通讯技术 (14) 3.1.44G通讯技术 (15) 3.1.5J2EE (15) 3.1.6智能移动终端技术 (16) 3.1.7Android技术 (16) 3.1.8IOS技术 (16) 3.2系统设计原则 (16) 3.3设计遵循的细则 (17) 3.3.1准确、完整、实时地采集数据,是重中之重 (17) 3.3.2安全、可靠、稳定的原则,是系统设计的第一准则 (17) 3.3.3实用性、可操作性原则,是系统顺利实施的关键准则 (17) 3.3.4针对公交业务特点进行设计的原则 (18) 3.3.5系统可扩展性设计 (18) 3.3.6充分利用已有投资设计原则,是保护投资的有效补充 (18) 3.4系统整体功能规划图 (19) 3.5系统部署与网络拓扑图 (20) 3.6软件系统框架设计 (20) 3.6.2基础技术设施层 (21) 3.6.3业务平台层 (22) 3.6.4业务应用层 (22) 3.6.5信息门户层 (22) 3.7应用系统设计 (22) 3.8系统接口设计 (23) 3.9系统性能设计 (23) 3.9.1应用程序设计 (23) 3.9.2查询优化 (24) 3.9.3服务器优化 (24) 3.10存储容量总体设计 (24)

基于摄像头的最佳道路识别及赛车控制算法 飞思卡尔

基于摄像头的道路识别及赛车控制算法 杨运海周祺吕梁 摘要:本文探讨了摄像头在智能车道路识别中的应用,并提出了一种通用的控制算法。在准确采集图像的基础上,利用临近搜索法对有效道路信息进行快速提取,通过分析赛道信息,计算出赛道黑线的走向趋势及赛车当前位置。在充分考虑当前和过去的赛道信息的基础上,对赛道类型进行判断及分类。在综合考虑赛道类型,黑线走向及车当前位置,对舵机的转向和电机的速度进行精确控制。 关键词:图像采集;临近搜索;转向控制,速度控制 1.概述 在飞思卡尔智能车汽车比赛中,路径识别方法主要有两大类,一类是基于红外光电传感器,令一类是基于摄像头。通常,红外光电传感器安装灵活,原理简单,可靠性好,不易受环境光干扰,因而得到了广泛应用,但其对前方道路的预判距离非常有限,不适宜赛车高速行驶。另一类是基于摄像头,与光电传感器相比,其优点非常明显,能提前获取大量前方道路信息,有利于实现赛车的最优控制。但其缺点是图像采集要求有高的AD转换频率,图像处理算法复杂度高,且容易受环境光的干扰。考虑到摄像头的优点远大于其缺点,因此选择了摄像头。以下是摄像头的工作流程图: 图B-1 摄像头工作流程

摄像头控制赛车行驶方案有三大模块:图像采集、赛道信息提取、转向和速度控制。 2.图像采集 考虑到S12的运算能力,我们采用了黑白制式、320*240的CMOS单板摄像头。摄像头出来的是模拟信号,每秒有50场图像,场之间有场消隐信号,行之间有行消隐信号,经过lm1881分离后,可得到场同步信号和行同步信号,作为行中断信号。由于行中断中要采集该行的信号,对时间要求很严格,其中断优先级应比普通中断的优先级高,因此我们选择IRQ作为行同步信号输入口,PT0作为场信号输入口。此外,为保证图像不丢失,我们仅对场信号的下降沿进行捕捉。 图B-2 摄像头视频信号 按照目前车的刹车时的加速度,我们选定图像拍摄最远处为前方1米就足以对速度做出了控制。考虑到前轮到前方20cm为摄像头的盲区,故有效拍摄范围为0.8m,为了保证不丢失起跑线,每2.5cm至少拍摄一行,故一幅图像至少采集32行。为了稳妥起见,我们选择了ROW=45行。摄像头最前方拍摄的宽度为80cm,而黑线宽度为2.5cm,故一行至少采集32,为了稳妥起见,一行采集的点数定为COL=45个点。 正常情况下,S12的AD频率不能超过2M,转化一个点需要14个周期,如果不超频,一行将只能采集8个点(24M主频时)。将分频系数设为0,此时AD 频率为12M。在行采集过程中,我们通过查询方式来判断AD是否转换完成,并对AD转换时间进行了记录,发现记录到的时间恰是期间指令执行一次的时间,这表明,影响一行采集的点数已不是AD的频率,而是执行指令的时间,因此采集过程中不需要查询A TDSTA T0的标志位,只需要通过执行一定数量的NOP空操作指令延时即可。例如采集47个点需要时,每个点的时间间隔是53us/47=1.125us,对应的指令周期数为1.125*24=27。通过反编译知读写等指令本身有13个指令周期,故令加14个NOP指令即可实现。 由于摄像头的角度关系,拍摄是不均匀的,而是前方疏,近处密。为了保证采集的均匀,采集的行之间间隔的行数就不能相同。摄像头的有效行数为285行左右,具体关系如下表: 行采集计数器line 摄像头行计数器row 备注 0 0 每3行采集一行

单目视觉智能车路径识别及控制策略

单目视觉智能车路径识别及控制策略研究* 陈启迅 薛 静 (西北工业大学自动化学院 西安710072 )摘 要 研究了基于CMOS摄像头的图像采集方法,以及智能车赛道路径识别。提出了自适应差分边缘检测算法,采用取点求面积的方法提取指引线的相关参数。自适应差分边缘检测算法是在一般的边缘检测算法的基础上提出的,它能根据提取的左右边缘存在情况调整搜索范围、阈值,以及差值的求取方法。使用海伦公式求指引线上所取的三角形的面积, 据此提出了1种基于三角形面积的智能车速度控制方法,此方法以指引线上的三角形面积反映赛道的弯曲程度,并以此作为智能车速度控制的控制变量。 关键词 自适应差分边缘检测;智能车;图像采集;海伦公式 中图分类号:TP301.6 文献标志码:A doi:10.3963/j .issn 1674-4861.2012.05.006收稿日期:2012-07-04 修回日期:2012-09- 07 *西北工业大学研究生创业种子基金项目( 批准号:Z2011047)资助第一作者简介:陈启迅(1984),硕士生.研究方向:控制工程、系统工程.E-mail:cq x062014@126.com0 引 言 智能车辆系统是1个拥有感知环境能力,具备规划决策能力以实现自动行驶,并且可以实现多等 级辅助驾驶等功能于一体的综合系统[ 1 ]。与很多学科有着密切关系,如计算机、控制、通信、图像处 理、人工智能、信号处理等,同时也是多种传感器融 合的载体。因为它一般集中了摄像机、GPS、超声波雷达、激光雷达等多种传感器来感知周围环境, 并根据多传感器融合所获得的道路、车辆状态和障碍物信息进行控制车辆的转向和速度,从而使得车辆安全、可靠、稳定地在道路上行驶,因此智能车辆 是多学科综合于一体的高度智能化的产物[ 2- 3]。文献[4] 中介绍了一般差分边缘检测算法。文献[5 ]中描述了基于序列图像运动分割的车辆边界轮廓提取算法。文献[6]中提到了道路裂纹线检测中的脊波域图像增强算法。选用功耗低、前瞻性好的CMOS摄像头作为路径识别视觉传感器,采用自适应差分边缘检测算法有效地提取道路指引线,此算法具有很高的灵活性和适应能 力, 能够有效地降低干扰。进一步使用取点求面积的方法获取指引线参数。 1 视觉图像采集 1.1 硬件实现 CMOS视觉传感器图像采集电路[7] 见图1 ,LM1881可以实现视频同步信号的分离。2脚为视 频信号输入端;3脚和5脚分别为场同步、行同步信号输出端;7脚为奇偶场同步信号输出端,在此不使用。视频信号同时接入微处理器AD转换口 。 图1 视频同步信号分离电路 Fig.1 The circuit for separation of sy nchronizationsig nal of video1.2 软件实现 视频信号采集流程[8] :首先等待场信号的到 来;然后延时,跳过场消隐,约1.44ms;等待行同步信号;判断采集行数是否满足要求,满足则采集完成,否则延时,跳过行同步信号和消隐信号;对1行视频信号进行连续采集; 延时,跳过若干行视频信号,再跳回到等待行同步信号,直至完成,就能采集到1幅有效而完整的视频图像了。 2 自适应差分边缘检测算法 阈值分割法[9- 10]在结构化道路上是提取指引 4 2交通信息与安全 2012年5期 第30卷 总171期

飞思卡尔智能车黑线识别算法及控制策略研究

智能车黑线识别算法及控制策略研究 时间:2009-05-1811:23:07来源:电子技术作者:北京信息科技大学,机电工程学院张淑 谦王国权 0引言 “飞思卡尔”杯全国大学生智能车大赛是由摩托罗拉旗下飞思卡尔公司赞助由高等学校自动化专业教学指导委员会负责主办的全国性的赛事,旨在加强大学生的创新意识、团队合作精神和培养学生的创新能力。此项赛事专业知识涉及控制、模式识别、传感技术、汽车电子、电气、计算机、机械等多个学科,对学生的知识融合和动手能力的培养,对高等学校控制及汽车电子学科学术水平的提高,具有良好的推动作用。 智能车竞赛所使用的车模是一款带有差速器的后轮驱动模型赛车,它由大赛组委会统一提供。自动控制器是以飞思卡尔16位微控制器MC9S12DGl28(S12)为核心控制单元,配合有传感器、电机、舵机、电池以及相应的驱动电路,它能够自主识别路径,控制车高速稳定运行在跑道上。比赛要求自己设计控制系统及自行确定控制策略,在规定的赛道上以比赛完成的时间短者为优胜者。赛道由白色底板和黑色的指引线组成。根据赛道的特点,比赛组委会确定了两种寻线方案:1.光电传感器。2.摄像头。 两种寻线方案的特点如下: (1)光电传感器方案。通过红外发射管发射红外线光照射跑道,跑道表面与中心指引线具有不同的反射强度,利用红外接收管可以检测到这些信息。此方案简单易行程序调试也简单且成本低廉,但是它受到竞赛规则的一些限制(组委会要求传感器数量不超过16个(红外传感器的每对发射与接收单元计为一个传感器,CCD传感器计为1个传感器)),传感器的数量不可能安放的太多,因而道路检测的精度较低,能得到指引线的信息量也较少。若采用此方案容易引起舵机的回摆走蛇形路线。 (2)摄像头方案。根据赛道的特点斯用黑白图像传感器即可满足要求。CCD摄像头有面阵和线阵两种类型,它们在接口电路、输出信号以及检测信息等方面有着较大的区别,面阵摄像头可以获取前方赛道的图像信息,而线阵CCD只能获取赛道一条直线上的图像信息。摄像头方案的所能探测的道路信息量远大于光电传感器方案,而且摄像头也可以探测足够远的距离以方便控制器对前方道路进行预判。虽然此方案对控制器的要求比较高,但组委会提供的MC9S12DGl28(S12)的运算能力以及自身AD口的采样速度完全能够满足摄像头的视频采样和大量图像数据的处理的要求。 本文就是在摄像头方案的前提下,在实时的图像数据获取的基础上对图像信息进行数据处理,从而提取赛道中心的黑色指引线,再以此来作为舵机和驱动电机的控制依据。 1摄像头采样数据的特点 采用的黑白摄像头的主要工作原理为:按一定的分辨率,以隔行扫描的方式采集图像上的点,当扫描到某点时,就通过图像传感芯片将该点处图像的灰度转换成与灰度一一对应的电压值,然后将此电压值通过视频信号端输出,见图1。摄像头连续地扫描图像上的一行,则输出就是一段连续的电压信号,该电压信号的高低起伏反映了该行图像的灰度变化。当扫描完一行,视频信号端就输出一个低于最低视频信号电压的电平(如O.3V),并保持一段时间。这样相当于紧接着每行图像信号之后会有一个电压“凹槽”,此“凹槽”叫做行同步脉

基于自动寻迹的智能公交车系统(C题)

基于自动寻迹的智能公交车系统(C题) 【本科组】 一、任务 设计并制作一套用电池供电的智能公交车系统,包括一台能沿着黑色引导线自主行驶的公交车和两个电子公交站,公交车行驶线路如下图所示。公交道路宽为60cm,公交道路用光滑平整的白纸制作,黑色小车引导线和状态标识线(可用电工胶带)宽度为1.8±0.1cm,站台停靠标识线长为20cm。起点与终点之间公交车道总长约25m,公交站点B、C、D的位置在示意图位置附近任意放置。 公交车站台 二、要求 1.基本要求 (1)电子公交站具有数据输入和显示功能,能在电子公交站上输入站台号以及本站与起始站间的距离。 (2)公交车从起始站点A出发,沿着黑色引导线,经站点前下车提示、停靠动作后,自动驶到终点站C,行驶过程中不允许驶出公交车道,要求在1分钟

内完成全程行驶; (3)公交车行驶到离站点100cm±10cm处时(以公交站台标识线为基准),应提前发出下车提示声5s; (4)公交车驶入站台停靠时,其车身中心标识线与站台停靠标识线间误差应不超过10cm,站台停靠时间为5s; 2.发挥部分 (1)把5s下车提示声改为下车语音提示(如:“B站到了,旅客请下车”,播报的站名必须是B站或C站); (2)撤消C站(将站台移动到D点),要求公交车能在2分钟内从起始点A 出发自动驶到D点(需要经过环行车道,不允许直接在十字路口右转弯),经过B站点时仍应有下车语音提示及停靠动作(公交车下车语音提示的距离及站台停靠的位置要求仍同基本部分的相关要求); (3)通过无线传输,公交站台上能实时显示驶向本站公交车的当前车速(单位米/秒)、到站时间(单位秒)及两者的距离(单位米),误差要求不超过5%; (4)其它。 三、说明 1.站台可设置在公交线路上的任意位置; 2.公交车可用各类小车改装,其尺寸不限,但公交车必须标出中心标识线。四、评分标准 蔽障+巡线+CCD识别物体

智能公交系统完整版

可行性研究报告 研究题目智能公交系 系别计算机科学与技术学院 专业班级计算机科学与技术学院 学生姓名 学号 指导教师于金峰 日期2015、03、01 目录 1、引言-------------------------------------------------------------------------------------------3 1、1编写目的------------------------------------------------------------------------------3 1、2背景-------------------------------------------------------------------------------------3 1、3 参考资料----------------------------------------------------------------------------- -3 2、可行性研究的前提--------------------------------------------------------------------------3 2、1要求-------------------------------------------------------------------------------------3 2、2目标-------------------------------------------------------------------------------------3 2、3条件、假定与限制-------------------------------------------------------------------3 2、4进行可行性研究的方法-------------------------------------------------------------3 2、5评价尺度-------------------------------------------------------------------------------4 3、对现有系统的分析--------------------------------------------------------------------------4 3、1处理流程与数据流程------------------------------------------------------------------5 3、2工作负荷---------------------------------------------------------------------------------8 3、3费用开支--------------------------------------------------------------------------------8 3、4人员--------------------------------------------------------------------------------------9 3、5 设备-------------------------------------------------------------------------------------9 3、6 局限性----------------------------------------------------------------------------------9 4、所建议的系统 4、1对所建议系统的说明-----------------------------------------------------------------10 4、2 处理流程与数据流程-----------------------------------------------------------------10 4、3改进之处---------------------------------------------------------------------------------15 4、4影响---------------------------------------------------------------------------------------16 4、5 技术条件方面的可能性--------------------------------------------------------------17

基于视觉传感器的智能小车标志识别系统

基于视觉传感器的智能小车的标志识别系统 摘要:视觉信号具有信号探测范围宽、获取信息丰富等优点。随着近几年图像处理技术以及计算机处理能力的飞速发展,视觉导航成为机器人导航的主要发展方向之一。机器人导航的任务之一就是根据路面特征来行走,本文在Visual C++集成开发环境中基于OpenCV 和DirectShow 视频采集技术编程实现了系统的功能。本文所设计的就是一个基于视觉传感器的智能小车的标志识别系统,根据图像分析后的二值图像序列信息,使小车能根据识别到的图像信息进行运动。 关键词:智能小车视觉导航图像处理特征识别 The Mark Recognition System Based on Vision for an Intelligence Vehicle Abstract:Visual signal with the signal detection range, access to information-rich and so on. As in recent years, image processing technology and the rapid development of computer processing power, visual robot navigation as the main development direction of navigation. Robot navigation tasks is to walk to the road characteristics, this article in Visual C + + integrated development environment based on OpenCV and DirectShow video capture technology, programming function of the system. This article is designed is a smart vision sensor based car sign recognition system, according to the image analysis of binary image sequences, so the car can be identified according to the image information campaign. Key Words:Intelligence Vehicle Mark Recognition Image Processing Feature Recognition 1 绪论 机器人[1]的导航技术是智能型机器人自主完成任务的核心技术。移动机器人[2]导航是指移动机器人按照预先给出的任务命令,根据已知信息做出路径规划,并在行进过程中,不断感知周围的局部环境信息,自主地做出决策,调整自身位姿,引导自身安全行驶或跟踪已经路径到达目标位置。这其中包括三个主要内容:避障、定位和路径规划。本文所设计的就是一个基于视觉传感器的智能小车的标志识别系统,根据图像分析后的二值图像序列信息,小车能根据识别到的图像信息进行运动。 2 基于视觉传感器的智能小车系统 本论文是基于视觉传感器[8]的智能小车识别系统,试验的平台选用的是上海中为机器人提供的小车,小车实现的功能是在地面行走时,能根据摄像头反馈回的地面特征,实现自主移动。实验中用到的模块有,CMOS 摄像头,无线图传模块,传感与通讯模块,运动控制模块,远程控制模块,USB 图像采集卡,运动过程如图2.1所示:

基础道路自识别的智能汽车控制系统设计

摘要 智能汽车凭借着其灵活、先进、高级、灵敏便利等特色受到了很多人的喜欢。智能汽车可以依据驾驶者所设置的参数进行判断和运算,判别驾驶者操作智能汽车的指令,而且做出相对应的反映。因而智能汽车除了可以辨识驾驶人员给它的相关指令外,还要可以对将要行驶的道路进行判别,并能够根据驾驶者的选择来行驶。 所以本课题来设计解决基于道路自识别的智能汽车的控制系统,采用单片机控制系统, 用来在其内部存贮实行逻辑运算、顺序控制、定时、计数和算术运算等操作的指令, 并通过数字和模拟的输入和输出, 来控制整个系统,并实现完整的智能汽车的行驶功能。 关键词:智能汽车;运算;控制;行驶

Abstract telligent car with its flexible, advanced, advanced, sensitive and convenient features such as a lot of people like. Intelligent vehicle can be based on the parameters set by the driver to judge and operation, to determine the driver's instructions to operate the smart car, but also to make the corresponding response. Thus the intelligent car in addition to the relevant instructions can be identified by the driver to it, but also on the road will be able to determine the road, and be able to travel according to the choice of the driver. So this topic to design solution based on road recognition in a smart car control system, using single-chip microcomputer control system, used in its internal storage implementation of the logic operation, sequence control, timing, counting and arithmetic operations, such as operating instructions and through digital and analog input and output to control the whole system, and to achieve complete intelligent vehicle driving function. Key words: intelligent vehicle; operation; control; travel

自动识别路径小车

自动识别路径的智能小车设计报告 来源:kaoshi365 作者:kaoshi365 日期:2009年11月12日访问次数: 625次论文关键字:智能小车电机驱动L298 自动循迹传感器算法 论文摘要:本系统采用存储空间较大的AT89S52作为主控制芯片,电动车电机驱动采用L298N芯片,结合DS10C4光电开关控制电动小汽车的自动寻路,快慢速行驶和转向,三者的结合使小车更加智能化,自动化。整个系统在设计中注意低功耗处理和力求高性价比等细节,电路结构简单,可靠性能高,无论在结构和技术上都具有较好的科学性。 本设计主要特点: 1. 高效的L298电机驱动电路,提高电源利用率。 2.利用软件实现PWM调速的方法。代替了专用集成芯片电路、通用数字组合电路、分立元器件组成电路、单片机系统控制电路、CPLD系统等。 一、模块方案比较与论证: 1. 车体设计 方案一:购买玩具电动车。购买的玩具电动车具有组装完整的车架车轮。由于装配紧凑,使得各种所需电路的安装十分方便,看起来也比较美观。但玩具电动车一般都价格昂贵。 方案二:自己制作电动车。一般的说来,自己制作的车体比较粗糙,对于白色基板上的道路面行驶,车身重量以及平衡都要有精确的测量,而且也要控制好小车行驶的路线和转弯的力矩及角度,这些都比较难良好地实现。依靠电机与相关齿轮一起驱动,能适应题目中小车准确前进、后退、转弯的要求, 基于以上分析,我们选择了方案二 2.电机模块 方案1:采用步进电机作为该系统的驱动电机。由于其转过的角度可以精确的定位,可以实现小车前进路程和位置的精确定位。虽然采用步进电机有诸多优点,步进电机的输出力矩较低,随转速的升高而下降,且在较高转速时会急剧下降,其转速较低,不适用于小车等有一定速度要求的系统。经综合比较考虑,我们放弃了此方案。 方案 2:直流电机:直流电机的控制方法比较简单,只需给电机的两根控制线加上适当的电压即可使电机转动起来,电压越高则电机转速越高。对于直流电机的速度调节,可以采用改变电压的方法,也可采用PWM调速方法。PWM调速就是使加在直流电机两端的电压为方波形式,通过改变方波的占空比实现对电机转速的调节。 基于以上分析,我们选择了方案二,使用直流电机作为电动车的驱动电机。

智能汽车路径识别中的图象处理算法

智能汽车路径识别中的图象处理算法 李 继 李晋尧 杨 明 孔士嘉 (北京印刷学院 信息与机电工程学院 北京 102600) 摘 要: 分析全国大学生智能汽车竞赛中智能汽车路径识别中的图象处理算法,重点介绍智能车车牌识别的控制算法。智能汽车通过OV7620数字摄像头对路面信息进行采集和处理,依次实现自动识别十字路口上的红绿灯、自动检测前方车距、自动识别车牌等功能,并以一个较高的稳定速度运行在规定的道路上。 关键词: 智能车;车牌识别;图象处理 中图分类号:TP391.4 文献标识码:A 文章编号:1671-7597(2011)1010184-02 1 绪论 到),D_out 是D 调节器的输出。因此,输出了相应的弧度角,小车方向控制的功能也就实现了。 随着21世纪经济全球化和信息化的加剧,计算机通信技术和计算机网 3 智能车自动识别十字路口的红绿灯 络技术等的迅猛发展,自动化信息处理能力和水平的不断提高并在人们社会活动和生活的各个领域得到广泛应用,高速度、高效率的生活节奏使汽智能车利用CMOS 摄像头识别十字路口的红绿灯,当小车驶至十字路口车普及成为必然趋势。 前,摄像头采集前方图像的灰度,当那个采集到某个区域的灰度值范围在伴随着世界各国汽车数量的增加,城市交通状况日益受到人们的重240-255时,则说明前方交通指示灯为红灯,小车在十字路口白线前停视。如何有效地进行交通管理,越来越成为各国政府及相关部门所关注的车,若没有采集到灰度值240-255范围时,认为前方交通指示灯指示为绿焦点。针对这一问题,人们运用先进的信息处理、导航定位、无线通信、灯,小车匀速驶过十字路口。当红灯变成绿灯时,小车检测到前方没有自动控制、图像处理和识别及计算机网络等科学技术,相继研发了各种交240-255的灰度值,则小车启动,驶过十字路口。 通道路监视管理系统、车辆控制系统及公共交通系统。这种智能交通系统 4 智能车车牌识别的控制实现 能够加强道路、车辆、驾驶员和管理人员的联系,实现道路交通管理自动车牌识别最基本的流程是:将采集后的图像二值化,然后依次经过车化和车辆行驶的智能化,增强交通安全,减少交通堵塞,提高运输效率,牌定位、字符分割、去除干扰,最后是字符识别。 减少环境污染,节约能源,提高经济活力。 4.1 二值化 本文设计的系统,就是在智能汽车以及飞思卡尔16位嵌入式处理器二值化是车牌识别的第一步。二值化前后的对比如下图2所示: S12X 单片机的基础上,对模拟驾驶进行创新设计,以期应用到实际的交通驾驶中。 2 智能车基于CMOS摄像头的路径识别和方向控制 智能车采用CMOS 图像传感器用于检测黑色跑道上两边的白线,扩展了检测范围,有助于选择正确的行进路线。在检测中,对图像中的前十行的像素进行分析,找出两条白线的中点,通过反复的实验,智能小车能够以一个较高的速度稳定地运行在给定的跑道上。 2.1 路线的识别和确定 路线识别和确定是智能车可以前行的前提。通过对摄像头所采集的图像进行二值化,然后对前十行的像素进行分析,由每行中两个白点的坐标来确定中心的坐标,从而得出十个中心坐标,将十个中心坐标连接起来,图2 二值化前后对比图 就是小车需要走的路径。图1所示为摄像头对跑道图像二值化的结果。 在车牌识别中,通过图像的二值变化将车牌与背景分割开来,要求转化的图像必须具有良好的保形性,不丢掉有用的形状信息,不产生额外的空缺等,其关键在于确定合适的阀值。 4.2 车牌定位 车牌定位是车牌识别的一个关键步骤,定位的准确与否直接影响着车牌识别的准确率。在车牌定位算法中,关键是寻找图像处理方法,使原始图像经图1 跑道的图像二值化结果 2.2 方向控制 智能汽车方向控制的核心是舵机控制,其输入信号是PWM 脉冲,并输出相应的弧度角。本文采用的S12单片机PWM 输出信号端口作为舵机的输入信号。为了使检测时更加稳定,本文采用了PID 控制器,由于无需考虑已经走过的轨道,所以本文只用比例微分调节器模块,下面公式显示了D 调节器的控制算法: 在enew ,eold 定义了这一次和下一次的角度的计算,t 是CMOS 摄像头扫描时间,微分系数Kd 被强制规定运行在0.5到1.5 (通过多次试验得 过该算法的处理后能够清楚地显示出车牌区域,同时使图像中的非车牌区域消失或者减弱,从而能准确有效地定位出车牌在图像中的位置。 车牌识别过程中,我们采用角点定位的方法,在所有的边界点中,选择某些曲率半径比较小的点,如图3所示(角点用红点表示)。 图3 二值化后角点定位图

公交车智能调度系统操作使用说明

公交车智能调度系统操作使用说明 一、系统目的: 1,利用调度室的电脑实现智能调度或者计算机辅助调度(排班)。 2,在调度室的电脑上显示当前所有运行车辆的实际位置分布图。 3,在公交车辆上安装了计数器后,可以实现指定时间段的客流分布统计,并自动形成流量柱状报表和百分比圆饼图,自动生成营运日志报表。 4,主界面如下图: 二、系统设置 “系统设置”是智能调度系统使用的前提,也就是说,只有设置好了才能进行智能调度,所以说正确的系统设置是智能调度平台使用的前提。 系统设置包括:公交站点设置、公交线路设置、排班规则设置三方面的内容。 注意:“排班规则设置”中有个参数“排班规则类型”,此参数要在“系统维护→系统参数设置→排班规则类型”中进行设置。 (一)排班规则类型:

1,选择“系统维护”→选择“系统参数设置”→选择“增加”可一增加排班规则,当然也可以修改和删除排班规则。 2,系统默认的排班规则:包括平常、周末、节日三种。举例如下图: 平常:周一到周五,存在上下班高峰期。 周末:不存在上班高峰期,客流量比较均匀。 节日:客流量有较明显的增长,可能需要要安排加班车。 (二)公交站点设置: 1,公交站点设置好以后中心系统将默认存在一个站点编号 站点设置包括:站点代码、站点名称、站点的位置(经纬度)。 2,终端收到这个站点的位值经纬度值后,将以这个站点为中心形成一个边长为100米的正方形区域,进出这个区域称为“进、出站点” 3,先设置好该路公交车的所有站点。 注意:同一个站点在马路的两侧将要设置成两个不同的站点。如果站点存在重合区域,那么系统将通过行使方向(正向、逆向)自动加以纠正区别开来。 下图是一个站点设置的所有参数的实例: 站点代码:便和系统识别的英文名称 站点名称:站点的真实名称 站点显示名称:站点在电子地图上显示的名称。 经、纬度:站点中心点的GPS坐标值。 轨迹定位:利用GPS轨迹寻找站点坐标的方法。 车辆定位:实际车辆停靠在车站,然后用监控中心查询该车辆的位置坐标。 报站音乐:规定为MP3格式,语言录音,例如:“北京路到了,请注意安全”。 备注:报站语言的内容。 删除:删除报站语音MP3文件。 更新时间:系统自动记录。

毕业论文-基于摄像头的智能车路径识别方案

基于摄像头的智能车路径识别方案 摘要:本文按照第四届“飞思卡尔”杯全国大学生智能汽车邀请赛的技术要求,经过一段时间的资料的采集与样本电路的参照,本文主要介绍了车模的系统设计原理,系统软件,与方案简介。在硬件电路的设计与实现中,描述了最小系统设计,电源模块,并且着重描述数字摄像头OV6620,在软件系统设计中,讲述了时 钟模块,ECT模块,图像采集以及图像处理等内容,经过实践证明,这些理论方案都可以得到证明,能使汽车稳定快速运行。 关键字:智能车;摄像头;电源模块;图像采集 The identification of intelligent vehicle path of program is based on Camera Abstract: This article in accordance with the 4th "flying to Karl" Cup National University SMART Car Invitational technical requirements for the time of the information gathering and sample circuits in the light of this article introduces the car model system design principles, system software, and the programme profile. On the hardware circuit design and implementation, describes the minimum system design, power supply, with emphasis on described digital camera OV 6620 in software design of the system on the clock module, ECT modules, image acquisition and image processing, the practice has proved that these theories programmes can be proved that auto steady and rapid operation Keywords: SMART cars; camera; power supply; image acquisition 目录 前言 4

高速公路车辆路径识别系统汇总

高速公路网 车辆路径识别系统方案建议书

目录 一、概述 (3) 1.1需求分析 (3) 1.2高清车牌识别系统解决方案 (4) 1.3系统扩展功能 (4) 二、系统设计 (6) 3.1系统规划 (6) 3.2多路径车辆识别监测系统 (7) 3.2.1点位设计 (8) 3.2.2系统构成 (8) 3.3车辆超速全程监控系统 (10) 3.3.1点位设计 (11) 3.3.2系统构成 (12)

一、概述 1.1需求分析 目前在高速公路路径识别的主要技术方法有标识法、车牌照识别法、最短路径法、布瑞尔交通分配法、出口确认法、路网平衡法、最大概率法、协商法、抽样调查法等等。国内比较实用的有标识站法和车牌照识别法。 1. 标识站法 标识站识别方法是依据精确识别原理,准确识别车辆的实际行驶路径,标识站法可分为停车式和不停车两种。在本文中重点对停车式标识站进行分析,以下提到的标识站均为“停车式标识站”。 在需要设置标识站的地方设置几条带收费岛的车道,前方设标志说明,收费车道上安装费接触式IC卡读写设备,司机通过此路段时,需将IC卡在读写天线的规定距离内划过,自动栏杆开启、车辆通行,记录该标识站信息。标识站还需要设置摄像机(对冲卡车辆进行抓拍)、雾灯等安全设施。该标识站的设立实际上上相当于主线收费站的建设,由收费亭、带IC卡读写器的计算机、自动栏杆、(摄像机)、雾灯、通行灯以及通行系统组成。路径的识别主要依靠写入通行卡的标识站编码,由出口根据入口、标识站信息自动计算车辆行驶路径。 由于标识站识别方法是依据精确识别原理,准确识别车辆的实际行驶路径,因此,标识站识别方法识别的精度较高。标识站的主要缺点是车辆每次经过标识站时必须停车,导致行车速度降低,降低了高速公路的服务水平,与联网收费的精神直接想违背,对社会形象也是一种极大的损害。 2. 车牌照识别技术 随着图像识别技术的发展,也可应用“车牌照识别”技术进行多路径的识别。即高速公路出、入口设置车牌照抓拍系统,在路网内关键点设置车牌照抓拍系统,摄取通过车辆牌照。

相关文档
最新文档