生活中的小概率事件完整版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生活中的小概率事件 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】
生活中的小概率事件
前言:
概率作为数学的一个重要部分,在生活中的应用越来越广,同样也在发挥着越来越广泛的用处。
让学生用数学知识和数学的思维方法去看待、分析、解决实际生活问题,在数学活动中获得生活经验,概率论是指导人们从事物表象看本质的一门科学,本文主要简单介绍了概率论现实生活的部分现象与分析概率知识的广泛应用。
关键字:小概率概率原理应用
正文:
1.小概率事件的原理
小概率事件应从两方面认识它:一方面由实际推断原理知道,小概率事件A 在一次实验中几乎是不发生的;另一方面,在不断地独立重复实验中,小概率事件A 迟早发生的概率为1。
前者是讲:在实践中,人们总结到“概率很小的事件在一次实验中几乎是不发生的”,这一经验称为“实际推断原理”。
事实上,“小概率事件”通常是指发生概率在以下或以下的事件。
这两个值称为小概率标准,主要是为了查表方便,没有其他特别的含义。
对于这类实验来说,在大量重复的实验中,平均每100次或20次才发生一次,所以认为在一次实验中该事件是几乎不可能发生的。
后者是讲:尽管“小概率事件”,在一次实验中几乎不发生,但如果实验的次数多了,该事件当然是很可能发生的。
2.小概率事件原理的应用
在一次实验中小概率事件几乎不发生
数学中的小概率原理认为:在一次实验中,概率很小的事件实际上不可能发生。
这个“很小”,一般理解为在个别事件中发生的概率小于5,这样的事件称为小概率事件。
小概率事件在一次事件中认为是不可能发生的。
如果在一次实验中,某个小概率事件发生了,则认为出现了不合理的现象,由此可以推断原来的条件或假设是错误的。
这个小概率原理就是我们假设检验这一章理论依据。
小概率原理的推断方法是概率性质的反证法,首先提出假设,继而根据一次实验的结果进行计算,最后按一定的概率标准作出鉴别。
其一般程序是:
第一步:先根据问题的题意提出原假设H0;
第二步:然后在原假设H0 成立的条件下,寻找与问题有关的小概率事件A,并进行一次试验;
第三步:再观察试验结果,看A是否发生?若发生则与小概率事件在一次试验中不可能发生原理矛盾,从而拒绝原假设H0,否则只能接受原假设H0。
案例:对盘踞在孤岛上敌军实施海上封锁。
为打击敌物资货运船队,需对敌船队运输规律作准确推断。
在某星期的空中侦察中,发现那一星期的敌船的12次偷运都是在星期二和星期四进行的。
问敌船在偷运时间是否曾作过规定
解:(1)假设敌船在偷运时间上没有规定,故应认为每次偷运在一星期的任一天进行是等可能的。
这时事件A:“12次偷运都在星期二或星期四进行”发生的概率P(A)=212/712≈,即千万分之三。
这是一个小概率事件。
千万分之三意味1000万个星期中大概只有约三个星期发生这种事件,因此这个事件在一次试验(检查)中
不会发生的,而现在一次侦察试验中发生了,这种不正常现象的发生只能说明假设有问题,故可推断敌船在偷运时间上有规定。
在假设检验的问题中,几乎没有一个绝对可靠的判断,因为“弃真”与“存伪”这两类错误总是与之相伴,所以,作任何判断、任何结论都要承担风险,并且风险无法避免。
那么怎样才能将风险降到最低程度?数理统计中一般就用“小概率原理”的“小”来度量和控制这个风险的程度。
在不断重复的独立试验中,小概率事件迟早发生的概率为1。
这种推断的理论依据是:
问题:设在一次随机试验中某一事件A出现的概率为着(着<0),则不论着如何小,只要不断地独立重复作此试验,A迟早会出现的概率为1.
证明:A迟早会出现的意思是,只要试验次数无限增多,A总会出现。
设AK={A于第k次试验中出现},则
P(AK)=着,P(AK)=1-着,
则在前n次试验中A都不出现的概率为
P(A1A2…An)=P(A1)P(A2)…P(An)=(1-着)n
于是,在前n次试验中A至少出现一次的概率为
Pn=1-P(A1A2…An)=1-(1-
着)n
把次试验一次接一次的做下去,即让n→∞,由于0 上述证明用到的事件的独立性的定义。
例如:用步枪射击飞机,飞机被击中的概率为(很小),但用250支步枪同时射击时,飞机被击中的概率为:P=1-250=≈(不太小)。
一般地,设事件A发生的概率为P>0,不论P怎样小,n次独立试题中A会发生的概率Pn=1-(1-P)n,当n→∞时,总有Pn→1,即当大量进行实验时,A几乎一定会发生。
因此,我们在生活和工作中,无论做什么事都要脚踏实地,对生活中的某些偶然事件要理性的分析、随着生产的发展和科学技术水平的提高,概率已渗透到我们生活的各个领域。
概率统计是数学重要的知识组成,也是来源于实际和生活的方法归纳与总结,在实际应用中概率统计与生活有着紧密的联系,特别在重要的应用领域,概率统计的思想、手法和判别有着关键性的应用,不但可以为生活提供更为科学的认知,也为各类生活决策提供合理和有效的基础。
总之,由于随机现象在现实世界中大量存在,概率必将越来越显示出它巨大的威力。
阐述了数学在生活中应用的广泛性;运用具体问题解释说明了随机现象的含义以及概率论研究对象;随机现象存在于我们日常生活的方方面面和科学技术的各个领域,概率论是指导人们从事物表象看到其本质的一门科学;用概率论的方法对日常生活中的一些看起来比较平凡的内容做些分析,常常会得到深刻的结果;就概率论的方法与思想,在解决生活中的应用展开一些讨论,从中可以看出概率方法与思想在解决问题中的高效性、简捷性和实用性
参考文献:
[1]茆诗松、程依明、濮晓龙.《概率论和数理统计教程》.高等教育出版社,2004.
[2]同济大学应用数学系,工程数学.《概率论和数理统计简明教程》.高等教育出版社,2003.。