用电量预测
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对问题一我们根据所给的数据进行分析,拟采用灰色预测模型进行预测,希 望得到未来五个月的用电量预测值,但是,由于整理出来的结果效果不太理想, 在调整后尝试使用时间序Βιβλιοθήκη Baidu中二次指数平滑方法对其进行周期性预测,然后对完 整周期采用曲线拟合的方法得到完整周期内的具体函数,改变时间的值,最终得 到题目中要求的预测结果
三、符号说明
x(1)(i)………………………………………………………………… 累加生成序列
������(1)(������)………………………………………………………………… 紧邻均值序列
������…………………………………………………………………………灰色预测参数 ������…………………………………………………………………………灰色预测参数 ������ ………………………………………………………………………………… 时间 {������������}………………………………………………………………… 零均值平稳序列 {������������}……………………………………………………………………… 白噪声序列 ������……………………………………………………………………………自回归阶数 ������……………………………………………………………………………偏回归阶数 ������������………………………………………………………………………… 自回归阶数 ������������………………………………………………………………………… 移动平均数 B…………………………………………………………………………… 后移算子 ������������……………………………………………………………季节模型的自回归系数 ������������……………………………………………………………………季节差分的阶数 ������������…………………………………………………………季节模型的移动平均参数
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的 成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表 述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。 如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
问题 3)由附件 3,增加天气温度因素,试建立数学模型,对 2)重新预测并进行 分析。
问题 4)如果深入考虑季节、经济增长和人口变化等其他因素对用电的影响,那 么,问题 2)的模型应该如何调整,给出理由和调整后的模型。
二、模型的假设
1. 假设附件数据真实可靠; 2. 用户在预测期间都在正常消费; 3. 假设用户在预测时间内不存在其它不可控因素影响,即仅考虑既定的因素;
2015 高教社杯全国大学生数学建模竞赛
承诺书
我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模 竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模 竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮 件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问 题。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行 公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表 等)。
我们参赛选择的题号是(从 A/B/C/D 中选择一项填写):B 我们的报名参赛队号为(12 位数字组成的编号): 76 所属学校(请填写完整的全名):河南理工大学 参赛队员 (打印并签名) :1.胡良志
问题 1)由附件 1,建立数学模型,预测 KLBL 用户 2015 年 10 月——2016 年 3 月每月用电量(主要包括每月峰期电量 1、峰期电量 2、平期电量 1、平 期电量 2、谷期电量等),并进行分析。
问题 2)由附件 2,建立数学模型,预测 BLBYD 用户 2016 年 3 月 15 日 11 点钟 ——2016 年 3 月 31 日 22 点钟每 15 分钟用电负荷量,并进行分析。
������������������(������)………………………………………………… 神经网络各层之间权值矩阵
2.陈雷 3.李付成 指导教师或指导教师组负责人 (打印并签名): (论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以 上内容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取 消评奖资格。)
日期: 年 月 日
赛区评阅编号(由赛区组委会评阅前进行编号):
2015 高教社杯全国大学生数学建模竞赛
对于问题二,观察数据不难发现,用户每天的用电量之间存在很强的周期性 特点,用电量是关于时间的周期性函数,对于此列问题的预测采用时间序列季节 ARIMA 模型对其进行整理并由此得到预测值。
问题三,在问题二的基础上增加关于气温的变量,从附件所给的数据不难推 测,随气温改变的同时用户用电量的峰值将随着气温与某个值的偏离值发生变化。 于是建立起用电量随时间变化的函数。仍然使用季节 ARIMA 模型,在气温处于附 件的数值时对问题二的结果进行调整。
编号专用页
赛区评阅编号(由赛区组委会评阅前进行编号):
赛区评阅记录(可供赛区评阅时使用): 评 阅 人 评 分 备 注
全国统一编号(由赛区组委会送交全国前编号):
全国评阅编号(由全国组委会评阅前进行编号):
用户用电预测
摘要
现代社会,电成为每个人不可或缺的消费品。你可能没有注意,你在消费电 力的时候往往存在很强的规律性,本题所给的两个用户的用电量附件中我们可以 得到并整理出数据间存在的必然联系。
问题四随着季节,经济增长及人口变化用户的用电量必然发生变化,综合考 虑这些因素,将其设置成不同参数,使用 BP 神经网络对其建立模型并处理。
关键字: 灰色预测模型,时间序列,二次指数平滑,曲线拟合,季节 ARIMA 模
型,BP 神经网络模型
1
一、问题的重述
城市日常生活和发展离不开用电。为了了解某城市某电力用户的用电情况, 请根据附件,对数据进行有关处理,解决如下问题:
三、符号说明
x(1)(i)………………………………………………………………… 累加生成序列
������(1)(������)………………………………………………………………… 紧邻均值序列
������…………………………………………………………………………灰色预测参数 ������…………………………………………………………………………灰色预测参数 ������ ………………………………………………………………………………… 时间 {������������}………………………………………………………………… 零均值平稳序列 {������������}……………………………………………………………………… 白噪声序列 ������……………………………………………………………………………自回归阶数 ������……………………………………………………………………………偏回归阶数 ������������………………………………………………………………………… 自回归阶数 ������������………………………………………………………………………… 移动平均数 B…………………………………………………………………………… 后移算子 ������������……………………………………………………………季节模型的自回归系数 ������������……………………………………………………………………季节差分的阶数 ������������…………………………………………………………季节模型的移动平均参数
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的 成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表 述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。 如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
问题 3)由附件 3,增加天气温度因素,试建立数学模型,对 2)重新预测并进行 分析。
问题 4)如果深入考虑季节、经济增长和人口变化等其他因素对用电的影响,那 么,问题 2)的模型应该如何调整,给出理由和调整后的模型。
二、模型的假设
1. 假设附件数据真实可靠; 2. 用户在预测期间都在正常消费; 3. 假设用户在预测时间内不存在其它不可控因素影响,即仅考虑既定的因素;
2015 高教社杯全国大学生数学建模竞赛
承诺书
我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模 竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模 竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮 件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问 题。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行 公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表 等)。
我们参赛选择的题号是(从 A/B/C/D 中选择一项填写):B 我们的报名参赛队号为(12 位数字组成的编号): 76 所属学校(请填写完整的全名):河南理工大学 参赛队员 (打印并签名) :1.胡良志
问题 1)由附件 1,建立数学模型,预测 KLBL 用户 2015 年 10 月——2016 年 3 月每月用电量(主要包括每月峰期电量 1、峰期电量 2、平期电量 1、平 期电量 2、谷期电量等),并进行分析。
问题 2)由附件 2,建立数学模型,预测 BLBYD 用户 2016 年 3 月 15 日 11 点钟 ——2016 年 3 月 31 日 22 点钟每 15 分钟用电负荷量,并进行分析。
������������������(������)………………………………………………… 神经网络各层之间权值矩阵
2.陈雷 3.李付成 指导教师或指导教师组负责人 (打印并签名): (论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以 上内容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取 消评奖资格。)
日期: 年 月 日
赛区评阅编号(由赛区组委会评阅前进行编号):
2015 高教社杯全国大学生数学建模竞赛
对于问题二,观察数据不难发现,用户每天的用电量之间存在很强的周期性 特点,用电量是关于时间的周期性函数,对于此列问题的预测采用时间序列季节 ARIMA 模型对其进行整理并由此得到预测值。
问题三,在问题二的基础上增加关于气温的变量,从附件所给的数据不难推 测,随气温改变的同时用户用电量的峰值将随着气温与某个值的偏离值发生变化。 于是建立起用电量随时间变化的函数。仍然使用季节 ARIMA 模型,在气温处于附 件的数值时对问题二的结果进行调整。
编号专用页
赛区评阅编号(由赛区组委会评阅前进行编号):
赛区评阅记录(可供赛区评阅时使用): 评 阅 人 评 分 备 注
全国统一编号(由赛区组委会送交全国前编号):
全国评阅编号(由全国组委会评阅前进行编号):
用户用电预测
摘要
现代社会,电成为每个人不可或缺的消费品。你可能没有注意,你在消费电 力的时候往往存在很强的规律性,本题所给的两个用户的用电量附件中我们可以 得到并整理出数据间存在的必然联系。
问题四随着季节,经济增长及人口变化用户的用电量必然发生变化,综合考 虑这些因素,将其设置成不同参数,使用 BP 神经网络对其建立模型并处理。
关键字: 灰色预测模型,时间序列,二次指数平滑,曲线拟合,季节 ARIMA 模
型,BP 神经网络模型
1
一、问题的重述
城市日常生活和发展离不开用电。为了了解某城市某电力用户的用电情况, 请根据附件,对数据进行有关处理,解决如下问题: