立体图形的展开与折叠讲解
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
展开与折叠
把一个正方体的表面沿某些棱 剪开,展成一个平面图形,能 得到哪些平面图形?请与同桌 进行交流。
上
前
左下右
后
注意事项
把正方体展成一个平面, 是指正方体中的6个面展成平 面图形,所得到的6个正方形中, 每一个至少有一条边和其它正 方形的某条边相连。
议一议: 怎样把所得到的 正方体表面展开图进行 分类?
了!
太棒
你们
KEY: 棒
2、“坚”在下面,“就”在后面, 胜利在哪里?
坚 持就是
胜 利
2、如下图是一个正方体的展开图,图中 已标出三个面在正方体中的位置,F: 前面;R:右面;D:下面。试判定另外 三个面A、B、C在正方体中的位置。
a
A
b
c
d
BCD
f
r
FR
3、如下图是一个正方体的展开图,每个
面内部都标注了字母,请根据要求填空:
1)如果D面在左面,那么F面在
;
2)如果B面在后面,从左面看是D面,
那么上面是
。
D
E
DE
A
B
AB
பைடு நூலகம்
C
C
F
F
4、把下图折起来,它会变成正方体
(
)
A
B
C
D
(√)
(√)
(4)
(5)
(√) (6)
(√)
(×)
(×)
把一个长方体的盒子沿棱剪 开,想一想:它的展开图是什 么样子?
上 后 左下 右 前
下图中的那些图形可以沿虚线折叠成长 方体包装盒,先想一想,再折一折。
下列图形哪个不是长方体的表面 展开图?
A C
B D
考考你
如果“你”在前面,那么谁在后面?
1、一个立方体的表面展开图必定6个正 方形连接组成,缺一不可,多一个也不对, 展开图折叠后,必须覆盖立方体的6个表面。
2、展开图沿横、竖方向展开时,一个方 向必定由4个正方形组成,而另一个方向必须 是3个正方形(一种例外)。
3.相对的面不相连
想一想:下列的图形都是正方体的展开图吗?
(3) (1)
(2)
第一类,中间四连方,两侧各一 个,共六种。
“141”型
第二类,中间三连方,两侧各有 一、二个,共三种。
“231”型
第三类,中间二连方,两侧各有二 个,只有一种。 “222”型
第四类,两排各三个,只有一种。
“33”型
将相对的两个面涂上相同的颜色,正方 体的平面展开图共有以下11种:
以上是一个立方体的11种平面展开图。虽 然一个立方体可能还会有更多的展开图,但 从上面这些图中,我们基本可以看出它的规 律。
把一个正方体的表面沿某些棱 剪开,展成一个平面图形,能 得到哪些平面图形?请与同桌 进行交流。
上
前
左下右
后
注意事项
把正方体展成一个平面, 是指正方体中的6个面展成平 面图形,所得到的6个正方形中, 每一个至少有一条边和其它正 方形的某条边相连。
议一议: 怎样把所得到的 正方体表面展开图进行 分类?
了!
太棒
你们
KEY: 棒
2、“坚”在下面,“就”在后面, 胜利在哪里?
坚 持就是
胜 利
2、如下图是一个正方体的展开图,图中 已标出三个面在正方体中的位置,F: 前面;R:右面;D:下面。试判定另外 三个面A、B、C在正方体中的位置。
a
A
b
c
d
BCD
f
r
FR
3、如下图是一个正方体的展开图,每个
面内部都标注了字母,请根据要求填空:
1)如果D面在左面,那么F面在
;
2)如果B面在后面,从左面看是D面,
那么上面是
。
D
E
DE
A
B
AB
பைடு நூலகம்
C
C
F
F
4、把下图折起来,它会变成正方体
(
)
A
B
C
D
(√)
(√)
(4)
(5)
(√) (6)
(√)
(×)
(×)
把一个长方体的盒子沿棱剪 开,想一想:它的展开图是什 么样子?
上 后 左下 右 前
下图中的那些图形可以沿虚线折叠成长 方体包装盒,先想一想,再折一折。
下列图形哪个不是长方体的表面 展开图?
A C
B D
考考你
如果“你”在前面,那么谁在后面?
1、一个立方体的表面展开图必定6个正 方形连接组成,缺一不可,多一个也不对, 展开图折叠后,必须覆盖立方体的6个表面。
2、展开图沿横、竖方向展开时,一个方 向必定由4个正方形组成,而另一个方向必须 是3个正方形(一种例外)。
3.相对的面不相连
想一想:下列的图形都是正方体的展开图吗?
(3) (1)
(2)
第一类,中间四连方,两侧各一 个,共六种。
“141”型
第二类,中间三连方,两侧各有 一、二个,共三种。
“231”型
第三类,中间二连方,两侧各有二 个,只有一种。 “222”型
第四类,两排各三个,只有一种。
“33”型
将相对的两个面涂上相同的颜色,正方 体的平面展开图共有以下11种:
以上是一个立方体的11种平面展开图。虽 然一个立方体可能还会有更多的展开图,但 从上面这些图中,我们基本可以看出它的规 律。