对中国国内上市公司的资本资产定价模型的分析报告
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对中国国内上市公司的资本资产定价模型的分析报告
一、理论介绍
资本资产定价模型, 即Sharpe(1964),Lintner (1965)和Black (1972)建立的简捷、完美的线性资产定价模型CAP(又称SLB模型),是金融学和财务学的最重要的理论基石之一。CAPM模型假定投资者能够以无风险收益率借贷,其形式为:E[ R[,i] R[,f] +B [,im] (E [ R[,m] ]—R[,f] ), (1)
Cov[R[,i] ,R[,m] ]
B [,im] = ------------------------- (2)
Var[R[,m] ]
R[,i] ,R[,m] ,R[,f] 分别为资产i 的收益率,市场组合的收益率和无风险资产的收益率。
由于CAPM从理论上说明在有效率资产组合中,B描述了任一项资产的系统风险(非系统风险已经在分散化中相互冲消掉了),任何其它因素所描述的风险都为B所包容。因此对CAPM勺检验实际是验证B是否具有对收益的完全解释能力。
资本资产定价模型(CAPM在理论上是严格的,但是在实际中长期存在着实证研究对它的偏离和质疑,其原因主要是资本资产定价模型的一组假设条件过于苛刻而远离市场实际。本次分析报告旨在通过对随机抽样的中国上市公司的收益率的分析,考察在中国的股市环境下,CAPM1否仍然适用。
二、数据来源
本文在CSMAR 大型股票市场数据库中随机选取了1995年 1 月到2001 年
12月的100支股票(存为名叫rtndata的EXCEL文件),作为对中国股票市场的模拟。同时还收集了同时期中国银行的年利率(取名为rf )作为无风险利率,并通过各股票的流通股本对上海、深圳两个市场A股的综合指数进行加权(取名为m⑵。
在SAS中建立数据集,其中各列指标分别为各股票的月收益率(为处理方
便,股票名称已改为y1-y100)、中国银行的年利率rf (本次报告没有将rf转换成月无风险收益率,因为这一差异将反映在系数上,且为倍数关系,对结果没有实质性影响)和以流通股进行加权(因为本次报告计算的是市场收益率)的上海、深圳两个市场A股的综合指数mr2。
本次报告采用的CAPM模型为:m二° •用-e jt, j =1,2, (100)
三、方法及步骤
1,在SAS中以lib name命令设定新库,名为finance。程序为:
lib name finance 'G:\fi nan ce\rt ndata'; run;
2,采用mea ns过程(也可以用uni variate 过程)对这100支股票做初步的
均值分析,初步得出各股票的样本均值等数据。程序为:
proc means data =finance.rtndata;
var y1-y100;
run ;
3,采用corr过程对随机抽取的若干支股票进行相关分析,以判断中国股票
市场的相关性。程序如下:
proc corr data =finan ce.rt ndata
cov ;
var y23 y67;
where stkcd>= 199512 and stkcd<= 199712 ;
run ;
4,用1995年1月至1997年12月期间的超额月收益率对每一股票进行时间序列回归,来分别估计各股票在这一期间的贝塔值。程序如下:
proc reg data =finan ce.rt ndata outest =finan ce.betas97;
model y1-y100=mr2/ noint ;
where stkcd>= 199512 and stkcd<= 199712 ;
run ;
求出的B值为:
采用类似的程序,算出1996年1月至1998年12月、1997年至1999年,1998
年至2000年中各股票分别在这一期间的贝塔值,存为数据集
finance.betas98 、finance.betas99 和finance.betasOO 。
5,用CAPM 模型r jt=Y O+ Z,I? +e jt, j =1,2,...,100对1998 年的超额月收益率数据逐月进行横截面回归。程序为:
data finance.beta97;
set finance.betas97;
keep _DEPVAR_ mr2;
run ;
data finance.data98;
set finance.rtndata;
where stkcd>= 199801 and stkcd<= 199812 ;
run ;
/*tran spose finan ce.data98 into finan ce.trdata98 with
SAS-A nalyst*/ data finance.forgama98;
merge finance.beta97 finance.trdata98;
run ;
proc reg data =finan ce.forgama98 outest =finan ce.gama98; model month1-month12=mr2; run ; quit ;
得到1998年12个丫1的值:
4,重复上面的步骤,分别得到1998年至2001年间的48个丫1值,如下:
5,对这48个打估计值进行下列假设检验:?= °。
应用SAS/Analyst/Statistics/Hypothesis Test/One-sample t-test for a Mean…过程,得到以下结果:mean值-0.01, t统计量-2.440, p值0.0185,所以在置信水平0.05下,拒绝H0,即认为mr2的系数不等于0,即认为股票的超额月收益率是B和B A2的线性函数。
6,在回归过程中加入新变量B A2,(即B的平方),重复上述回归过程。程序为:data finance.forgama01b;
set finance.forgama01;
betasq=mr2*mr2;
run ;
proc reg data =finan ce.forgama01b outest =finan ce.gama01b;
model month1-month12=mr2 betasq;
run ; quit ;
合并为48个丫值,程序为:
data finance.allgamab;
set finance.gama98b finance.gama99b finance.gama00b
finan ce.gama01b;
run ;
再应用SAS/Analyst/Statistics/Hypothesis Test/One-sample t-test for a Mean … 过程,得到以下结果:mean值分别为-0.03 (m⑵和0.01 (betasq), p值分别为0.1840 (mr2)和0.3457 (betasq),所以在置信水平0.05下,都接受H0,即认为mr2和betasq的系数平均值都等于0,即认为股票的超额月收益率不是B和B
A2的线性函数。