测量含油率的常用方法

测量含油率的常用方法
测量含油率的常用方法

测试含油污泥含油率常见的方法(1)索氏抽提差量法[1]

步骤:准确称取已烘干、混合均匀的含油钻屑30g,滤纸包好,置于干燥的索氏提取器中,加入150ml溶剂(石油醚60~90℃),在90℃下加热回流萃取10h,将萃取后的钻屑烘干至恒重后称取质量,钻屑萃取前后的质量差即为含油质量

采用索氏提取的萃取方法,用石油醚(60~90℃)为萃取剂对钻屑萃取10h,称量其萃取前后的质量差即可准确测得钻屑中的含油量,且试验使用的药品少、数据准确、标准偏差小(1.39%)、操作安全简便、数据重现性好,适于芳烃含量较高的含油钻屑的含油量的测定。

(2)共沸蒸馏法[2]

测量开始前要先进行实验准备工作,将含油污泥样品使用电动拨拌器拔拌2h左右,使样品中水分、油分和渣混合均匀,保证实验的准确性。共满蒸馏法测量含油污泥的含水率、含油率实验采用实验室普通的蒸馏装置在通风橱中进行。取一个无胶滤筒和一个半截无胶滤筒,其总质量为M z0,将搅拌均匀的油泥样品8.00g置于无胶滤筒中,并另取半截滤筒置于开口处使其密封。在圆底烧瓶中加入200ml甲苯,将圆底烧瓶放入TC-15型恒温电热套(恒温范围50°C-200°C)中,将实验装置如图3-2安装好。启动电热套,将温度调节到刻度125°C处,加热30min使溶剂温度恒定在125°C。之后每隔5min升高5°C直至150°C停止,使溶剂温度缓慢是为了防止在升温过程中由于升温过快而使共沸溶剂瀑沸进入冷凝管,从而影响实验精度。恒温电热套出于150°C状态下工作约6h,直至盛放滤筒的玻璃管内的溶剂为无色。

冷凝管下方的接收管中水和甲苯分层,可以根据管上的刻度直接读出水的体积。烧瓶中的试剂冷却后,将试剂转移至已知质量M y0的烧杯中,在65°C温度下加热约5h直至烧杯恒重,现在烧杯质量M y1即为烧杯和油泥中油品的质量总和。而滤简在105°C温度下加热约2h直至滤筒恒重,现在滤筒质量M z1为滤筒和油泥中渣的质量总和。M y1-M y0即为含油污泥样品中油品质量,M z1-M z0即为含油污泥样品中渣的质量。所以共沸蒸馏法不仅可以直接测量中含油污泥含水率、含油率、含渣率,还可以将含油污泥中油分、水分和渣直接分离。

(3)红外分光光度法[3]

由于国家相关法规和规并没有相应的含油污泥含油率的测定方法,因此本实验中含油污泥的含油率的检测方法主要是参照《城市污水处理厂污泥检测方法》(CJT221一2005)的红外分光光度法并参照相关文献的相关测定方案基础上改进得到。

(1)称取湿污泥样品重约w1(g)置于50mL烧杯中,

(2)在烧瓶中加入50mL的四氯化碳作为提取液V,用锡箔纸封口后用28kHz的超声作用20min;

(3)利用活化后的硅酸镁吸附柱将超声后提取液中的干扰物质和极性分子去除;

(4)提取用移液管将1mL的提取液转移至100mL的容量瓶进行定容,因此稀释倍数为

A(100倍);

(5)最后将定容好的提取液用红外测油仪测定污泥中的含油量,读出提取液的含油率

H1(mg/L);

(6)根据以下公式计算得出含油污泥的石油类含量Y L(mg/g干污泥)

H1一红外测油仪读出提取液含油率(mg/L)

W1一样品重量(g)

A一稀释倍数为100

v一提取液体积

(4)回流法(GB/T260-1977)[4]

准确称取油泥样5.00g(m),转移至250mL烧瓶中,加入甲苯50mL,在烧瓶上部加分水器和冷凝管,通入冷却水后,加热回流2h,精确测量回流后水量V1(mL),计算油泥中的含水率%(X w):

X w=V1/m(油样)×100%

继续将烧瓶中剩余含油固(简称泥沙)、液体全部取出,在梅花滤纸上过滤,将滤渣用汽油充分洗涤数次,直至滤纸下滤出液体显汽油原色。将滤渣在烘箱内105℃下烘干至恒重,称量,记录滤渣质量m1(沙),计算油泥样含沙率%(X s):

X s=m1(沙)/m(油样)×100%

根据上述两组数据可以计算出油泥含油率%(X0):X0=1-X w-X s

(5)烘干法

取一清洁干燥恒重后的坩埚,称重(m1),加入油泥样品约0.5g左右,称重(m2)。将坩埚和油泥一起放入105℃下烘箱内,干燥2h后准确称重(m3)。然后将此干燥后样品放入

马福炉,在450℃下烘烧2h后称重(m4)。可以计算出油样中泥沙含水率%(X w),含沙率%(X s),含油率%(X0):

X w=(m2-m3)/(m2-m1)×100%

X s=(m4-m1)/(m2-m1)×100%

X0=(m3-m4)/(m2-m1)×100%

[1]白超峰,吴洪特,岳前升etc.废弃油基钻井液钻屑含油量室内测定方法探讨[J].石油天然气学报.2013,(12):117-120+118.

[2]朱嘉卉.含油污泥的理化特性研究与分析[D]:浙江大学2014.

[3]张江涛.含油污泥微波清洗脱油的实验研究[D]:广东工业大学2011.

[4]祝愿.含油污泥水洗分离实验室研究及室外中试装置设计开发[D]:辽宁师范大学2011.

含油轴承特点

含油轴承(Sleeve Bearing) 传统的直流无碳刷风扇马达设计时,是扇叶转子(简称转子)及其轴芯穿越含油轴承,简称SLEEVE轴承,枢接固定在马达定子之中心位置,使转子与定子之间保持一个适当之间隙,当然轴芯与轴承间亦务必有间隙之存在,才不会将轴芯死锁而无法运转;而马达之定子结构部分(简称定子),在电源输入之后,就会在转子与定子间产生感应磁力线,及驱动回路之控制使风扇马达运转。故传统之风扇马达架构,只有一个扇叶转子及一个马达定子和一个驱动回路,而借着轴芯与轴承之枢接,随着磁场感应而运转,请看下图: 1.用含油轴承的优点 A.耐外力之撞击,运输时所造成之损坏较少; B.价格便宜(与滚珠轴承相比,价格差异很大。 2.用含油轴承的缺点 A.空气中的灰尘会因风扇马达之运转而被吸入马达核心,与储存在轴承周围之润滑油混合成油泥,而造运转噪音,甚至于卡死不转; B.轴承内径容易磨损,使用寿命较短; C.无法被使用在携带式产品上; D.轴承与轴芯之间隙小,马达之运转激活效果较差; E.马达运转轴芯与轴承摩擦所产生的高温气体,因受轴承两端之油圈、华司阻碍,无法排除而形成氮化物,易淤塞于轴芯与轴承之间隙内,阻碍马达运转之顺畅。 滚珠轴承的特点 滚珠轴承(Ball Bearing) 滚珠轴承是运用圆金属珠运转,属于点的接触,故激活运转很容易。再加上滚珠轴承配合弹簧使用,故在弹簧顶撑着BALLBearing之外金属环,而使整个扇叶转子的重量坐落在滚珠轴承上,且由弹簧间接顶撑着,故可使用于不同之方向、角度之可携式产品,但仍要防止掉落,以免滚珠轴承受损,而造成噪音产生与使用寿命的减损。

1.使用滚珠轴承的优点 A.金属珠运转属于点的接触,故激活运转很容易; B.可使用于常以不同置放角度及方向操作的可携式产品(但要防止乱摔或掉落);C.使用寿命较长(与含油轴承相比) 。 2.用滚珠轴承的缺点 A.轴承结构体相当的脆弱,无法承受外力之撞击; B.马达转动时,金属珠之滚动会产生较大之噪音; C.价格高,无法与含油轴承在成本价格上竞争; D.滚珠轴承之来源与数量需求,不易掌控; E.滚珠轴承使用弹簧的弹性而使其定位,组装上较为不易。

脊柱各结构的体表定位

脊柱各结构的体表定位和临床应用(转载) 一,脊柱各结构的常用体表定位法 (一) 触抹法:此法最方便,最常用,较准确。是利用人体的骨性标志,对脊柱各结构进行触抹而确定其位置。 1,棘突的触抹定位法: (1) 颈椎:常利用枕外粗隆、C2、C7棘突,来确定颈椎各棘突的位置。 枕外粗隆:粗大,任何人均可准确触抹清。沿此向下,有一凹陷,再向下推摸,可触及一骨突,即为C2棘突。 C2棘突:较大,末端分叉。瘦弱者低头时可见其隆起于项部的上段。任何人也可摸清。可做为颈棘突检查的基点。C2既定,向下推摸,即可触抹清C3棘突。 C7棘突:长而大,多不分叉。低头时,其隆起于项背交界处。也可准确抹清。沿其向上触摸,就可确定C6、C5棘突的位置。唯 C4棘突不易抹及。但可从己标出的C3、C5棘突而可推测出其位置约。约有20%的人,C6棘突比C7棘突长。个别人的 T1棘突比C7的长。应注意鉴别。 (2) 腰椎棘突: 常利用可准确抹清的双侧髂嵴最高点来定位。L4棘突、或L4.5棘间,正位于双侧髂嵴最高点的连线上。 S1:双侧髂后上棘连线水平,正相当于S1椎体。故S1中嵴也能较准确定位。 故L3、L4、L5棘突就能较准确定位;甚至L2、L1棘突也基本能定位 (3) 胸椎棘突: 当人直立,双上肢自然下垂,双肩胛岗内侧端连线,与 T3棘突平。双侧肩胛骨下角的连线,与 T7棘突平。 因为C7、T3、T7的棘突均能较准确定位,故T1、T2、T3、T4、T5 T6 、T7、T8,甚至T9、T10也能较正确地定位。 2,横突的触抹定位法: (1) 颈椎横突的触抹定位: C1横突:位于乳突与下颌角连线中点水平的胸锁乳突肌后缘。 C2横突:位于下颌角水平线与胸锁乳突肌后缘的交界处。 C3横突:位于舌骨角水平线与胸锁乳突肌后缘的交界处。 C4横突:位于甲状软骨近上缘水平线与同肌后缘的交界处 C5横突:位于甲状软骨水平线与同肌后缘的交界处。 C6横突:位于环状软骨水平线与同肌后缘的交界处。 C7 横突:位于上一横突之下。 也可如此定:均在胸锁乳突肌后缘触抹,自乳突尖始,每隔约1.0-1.5cm,即为一个横突。 (2) 胸椎各横突的触抹定位:不易触抹清。

精密型轴承内径测量方案

精密型轴承内径测量方案 项目承接方公司名称: 北京伊斯来福机电设备有限公司 项目编号:LYC2012 德国DIATEST孔径测量系统是根据DIN EN ISO 9001标准制作而成。通过完美的制作加工工艺,产品达到了世界顶级水平。DIATEST的服务理念是:给DIATEST所有的客户提供合理的价格、卓越的品质、专业的建议、交期的保证,得到了DIATEST全球合作伙伴的高度赞赏。 BMD塞规式测量系统优越性说明 BMD塞规是具有自动定中心功能的高精度测量系统。BMD塞规使用方便,适合静态和动态测量。通过手动测量可以检测出圆柱孔各个截面的尺寸偏差、椭圆、锥度;也可安装在测量设备上进行自动测量。测量系统具有操作简单,测量过程不需要找拐点、一致性高、重复性好、检测效率高、精度高、结构牢固、将人为误差降到最低等优点。仪器的显示部分可以使用机械表、数显表或通过传感器连接到分析设备;可提供动态、静态数据分析、基本尺寸控制和一些其它使用功能的外围设备。 方案1. 手动测量 德国DIATEST塞规式无线测量系统简介 电子塞规测量系统主体采用BMD塞规式测头,数据传输采用无线装置-万分表DIATRON 1000。该装置为孔径测量行业国际最先进产品,测量系统有七个显示位,数据通过无线电传输,安全性高。内置式高精密传感器保证了测量数据的重复精度为0.0002mm,操作简单只需轻按手柄处按钮即可将数据发送至数据显示及分析统计装置,同时采用交通灯三色显示(红色-测量结果超出允许公差;黄色-测量结果超出预警公差但在图纸允许公差范围内;绿色—测量结果在预警范围内)提供测量结果超差报警。既可在万分表上直接编程,也可使用电缆与 PC或显示装置连接编程或传输测量数据。免费提供简单的数据接收程序软件。

含油轴承论文—中文版

译文: 含油轴承润滑 滑动轴承 有两大类型的轴承用在今天机械行业中:滑动和滚动轴承。本文旨在论述滑动轴承的特殊润滑需求。 轴承包含一个轴和一个支持组件,这个环绕着轴的支持组建也可以被称作是套筒,在与轴配套适应的前提下,它可以有一个、两个或者多个部件构成。 普通轴承适用于高径向负载(垂直于轴的轴线),同时适用于低速到高速。典型应用包括发电机、大型铣系统、发动机曲柄,压缩机,齿轮箱,轴承支持,等等。 每个滑动轴承都有一些共同的设计特点。 在滑动轴承中被油膜隔开的是轴和轴承衬垫。轴是由高质量、耐磨,结构强钢构成的,而根据设备的设计特点,轴承衬垫可能由一层或多层结构钢构成 润滑机理 在正常操作条件下,润滑机理将会是流体动力学意义上的全液油膜型润滑。润滑油液会充满轴和套筒之间的所有缝隙,在所有接触点之间形成一个油液之间的滑动表面。在这种状态下,被润滑的组件彼此不相互接触,这样就减少了摩擦和磨损。 在这个条件下,可以用一个式子来表示:ZN/P,其中Z表示油液粘度,N 表示轴的转速而P是表示负载。这个方程在图上所表示的曲线称为Stribeck曲线。它是表示速度、负载和摩擦之间关系的典型图像。 在混合油膜的情况下,两个工作表面瞬时接触时所造成的油膜损失是显而易见的,这可以在接触瞬间发生变化,我们将其称为冲击载荷,油膜的层叠导致部分粗糙表面发生直接接触。 另一个可能发生这种情况的位置是在油膜润滑的边界部位。这是当分隔金属表面的油膜收到重载荷的作用而发生的情况。这种情况下任何时候部件表面的相对运动速度很慢,没有形成油膜。 滑动轴承的润滑需求 在适当的速度,面积,体积和油的粘度的条件下,滑动轴承可以承受很重的负荷。这些条件之间的平衡是很重要的。如果负载或速度变化,润滑油粘度必须进行调整,以弥补这一变化。并没有简单的公式来用于计算滑动轴承润滑油膜的粘度要求,但ZN/P公式证明了通过复杂计算所得的结果可以适当在轴承间隙中应用

流量测量技术综述

流量测量技术综述 摘要:本文说明了流量测量技术在工业生产中的重要性,写出了流量测量方法的分类及相关概念。分析流量测量技术的发展现状及趋势,对四种常用流量计的机构及原理进行研究。介绍了流量测量技术在电厂中的应用,并写出了流量计的选型需要考虑因素。对流量测量技术进行综述。 关键字:流量测量流量计原理选型趋势 1 引言 流量测量是工业过程测量中的一个重要参数。在工业生产中承担着两类重要任务:其一为流体物资贸易核算储运管理和污水废气排放控制的总量计量;其二为流程工业提高产品质量和生产效率,降低成本以及水利工程和环境保护等作必要的流量检测和控制。 流量测量涉及广泛的应用领域。过程测量、能源计量、环境保护、交通运输等高耗能领域对流量测量的需求急速增长,为流量测量技术提出了新的要求。不仅要求流量测量仪表耐高温高压,而且能自动补偿参数变化对测量精度的影响,从节约能源、成本核算、贸易往来及医药卫生等方面的特殊要求考虑,要求流量测量精度高、压损小、可靠性高。新技术、新器件、新材料和新工艺及新软件的开发应用,使得流量计的测量准确度越来越高,流量的测量范围越来越广。同时流量计对测量介质的要求在降低,适用范围也越来越宽,智能化程度及可靠性得到了很大的提高。 2 流量的测量 2.1 流量测量的概念及方法分类 介质在单位时间内通过给定的通道或管道横截面的量叫做通过该截面的流量。流量的读数可以是质量单位或容积单位。流量也是总量除以时间的商。反之,总量可以看作流量与时间的积。流量与总量都是物理量,彼此通过时间相联系。 流量测量方法大致可以归纳为以下四种:利用伯努利方程原理,通过测量流体差压信号来反映流量的差压式流量测量法,用这种方法制成的仪表如转子流量计、靶式流量计、弯管流量计等;通过直接测量流体流速来得出流量的速度式流量测量法,用这种方法制成的仪表如涡轮流量计、涡街流量计、电磁流量计、超声波流量计等;利用标准小容积来连续测量流量的容积式测量,用这种方法制成的仪表如椭圆齿轮流量计、腰轮流量计、刮板流量计等;以测量流体质量流量为目的的质量流量测量法,用这种方法制成的仪表如热式质量流量计、科氏质量流量计、冲量式质量流量计等。 2.2 国内外新成果举例 2007年清华大学高晋元教授发表《参数估计法测量两相流流速》一文,提出运用模型参数估计可直接辨识随机流动噪声的渡越时间,能起到在时域对传感器信号进行预滤波的作用,推动了我国在相关流量测量技术上的进步。

轴承轴向游隙如何测量

轴承轴向游隙如何测量 选择轴承游隙时,应考虑以下几个方面: 1. 轴承的工作条件,如载荷、温度、转速等; 2. 对轴承使用性能的要求(旋转精度、摩擦力矩、振动、噪声); 3. 轴承与轴和外壳孔为过盈配合时导致轴承游隙减小; 4. 轴承工作时,内外套圈的温度差导致轴承游隙减小; 5. 因轴和外壳材料的膨胀系数不同,导致轴承游隙减小或增大。 根据使用经验,球轴承最适宜的工作游隙为近于零;滚子轴承应保持有少量的工作游隙。在要求支承刚性良好的部件中,FAG轴承允许有一定数值的预紧力。这里特别指出,所谓工作游隙,是指轴承在实际运转条件下的游隙。还有一种游隙叫原始游隙,是指轴承未安装前的游隙。原始游隙大于安装游隙。我们对游隙的选择,主要是选择合适的工作游隙。 国家标准规定的游隙值分为三组:有基本组(0组)、小游隙辅助组(1、2组)和大游隙辅助组(3、4、5组)。选择时,在正常工作条件下,宜优先选用基本组,便可使轴承得到合适的工作游隙。当基本组不能满足使用要求时,则应选用辅助组游隙。大游隙辅助组适用于轴承与轴和外壳孔采用过盈配合,轴承内外圈温差较大,深沟球轴承需要承受较大轴向负荷或需改善调心性能,心及要求提高极限转速和降低NS K轴承摩擦力矩等场合;小游隙辅助组适用于要求较高的旋转精度、需严格控制外壳孔的轴向位移,以及需减少振动和噪声的场合。 1 轴承的固定 在确定了轴承的类型和型号以后,还必须正确的进行滚动轴承的组合结构设计,才能保证TIMKEN轴承的正常工作。 轴承的组合结构设计包括: 1)轴系支承端结构; 2)轴承与相关零件的配合; 3)轴承的润滑与密封; 4)提高轴承系统的刚度。 1. 两端固定(两端单向固定) 普通工作温度下的短轴(跨距L<400mm),支点常采用两端单向固定方式,每个轴承分别承受一个方向的轴向力。如图,为允许轴工作时有少量热膨胀,轴承安装时应留有轴向间隙0.25mm-0.4mm(间隙很小,结构图上不必画出),间隙量常用垫片或调整螺钉调节。 特点:限制轴的双向移动。适用于工作温度变化不大的轴。 注意:考虑受热伸长,轴承盖与外端面之间留补偿间隙c,c=0.2~0.3mm。 2〃一端双向固定、一端游动 当轴较长或工作温度较高时,轴的热膨胀收缩量较大,宜采用一端双向固定、一端游动的支点结构,如图。 固定端由单个轴承或轴承组承受双向轴向力,而游动端则保证轴伸缩时能自由游动。为避免松脱,游动轴承内圈应与轴作轴向固定(常采用弹性挡圈)。用圆柱滚子轴承作游动支点时,KOYO轴承外圈要与机座作轴向固定,靠滚子与套圈间的游动来保证轴的自由伸缩。 特点:一个支点双向固定,另一个支点作轴向游动。 深沟球轴承作为游动支点,轴承外圈与端盖留间隙。 圆柱滚子轴承作为游动支点,轴承外圈应双向固定。 适用:温度变化较大的长轴。

含油轴承的设计资料

资料1有关油的选择方法 1.油的分类 矿物油(石蜡系、石油质系) 合成油(脂、聚·烯、热固型醇树脂、双脂、氟素油、矽素) 动植物油(蓖麻子油、菜子油、鲸鱼油) 2.选择油时之注意点 (1)一定明确指出轴承之使用温度范围 (2)确认是否为低摩擦系数之轴承? (3)确认负荷之大小? (4)是否油膜之形成不易? (5)轴承材质中的Zn、Pb与油之反应性如何? (6)含浸油与轴承回转之轴承座材质。 (7)轴转速之大小? 3.上述第二项问题与油性质之关系 关于第2-1项:室外使用的汽车零件以及电气制品,当寒冷时油的流动性,炎热时油粘度下降,寿命以及该温度下,油之线膨涨系数变化。(流动性、粘度指数、线膨涨系数) 关于第2-2项:便如电池之能源时,电流之消耗不同以及音量的问题。(油之摩擦系数、油性之有无)关于第2-3项:高负荷时高粘度,低负荷时为低粘度。(粘度及油膜之强度) 关于第2-4项:不平衡之负荷、断续运转、振动。(极压性、油性、油膜强度) 关于第2-5项:各种基础油以及添加剂和金属之亲和性。(反应性) 关于第2-6项:各种基础油以及添加剂和树脂之亲和性。(反应性) 关于第2-7项:在流体力学上,制品与轴之间的损耗。(粘度、粘着性) 4.油之一般性质(基础油) 矿物油便宜;不易侵犯树脂;对金属安定;多种粘度;低粘度指数;高流动点。 合成油价贵;对於树脂金属要注意;粘度之范围窄;高粘度指数;低流动点。 动植物油强油性;虽有摩擦,同傍晚的腐蚀不适於长寿命用。 5.一般适用的油 关于第2-1项:进行耐热温度与流动点之确认参照PORITE所荐之油一览表。

关于第2-3项:高负荷时用粘度的油MAX.130 CST左右,低负荷用MIM.32CST左右就可以,参考Porite所扒荐之油一览表。 关于第2-4项:PSL-4、PSL-5 关于第2-5项:对Zn、Pb不适合的油腔滑调品(对Zn可抗阴),以Diester系PSL-1、PSL-2、PSL-7、PSL-10。 关于第2-6项:同上记 关于第2-7项:与第2-2项相同,仅於小负荷制品。

轴承常用量具

第二章轴承检查常用量仪 滚动轴承属于精密机械产品基础件,要求有互换性。为了确保其精度,除了靠合理的工艺和正确的机械加工方法之外,还须有严格的质量检查。为了使检查技术适应于轴承行业生产专业化、成批大量生产特点的需要,广泛采用了轴承专用量仪。但有时根据需要,中等精度要求的轴承也使用通用量具检查。 一.常用通用量具的使用方法 1.游标卡尺 当使用简单的刻线量具(如刻度尺)进行测量时,要求准确到1/10刻度是相当困难的,主要是因为人眼的分辨能力所限。为增加读数的准确度,可以利用机械细分的办法解决。游标卡尺的原理实际上就是游标刻线细分原理,通常在测量准确度要求不高的生产车间使用,如在轴承生产中,锻件、热处理件及外购保持架、车工件的检验可用游标卡尺,直接量出工件的内径、外径、宽度等尺寸。 1)外形结构 游标卡尺的外形结构,见图2-1。它由主尺(尺身)1、带游标的尺框2、活 动量爪3、固定量爪4、内量爪5、6和固定螺丝7组成。在使用时,先将固定螺丝7松开,尺框2连同3、6一起在主尺上移动。测量准确后,通过螺丝7紧固,以保持读数。由于卡尺均无测力装置,所以在使用时要防止用力过大,否则会影响测量准确度。一般以量爪的测量面紧密接触被测件同时活动量爪又无视力可见的偏转为宜,有经验者多以手感掌握。 图2-1 游标卡尺 1—主尺 2—尺框 3—活动量爪 4—固定量爪 5、6—内量爪 7—固定螺丝 2)游标卡尺读数方法 游标读数(或称为游标细分)原理是利用主尺刻线间距与游标刻线间距差实 现的。 游标卡尺按其刻度值分类有0.1mm、0.05mm和0.02mm三种,这三种游标卡尺的尺身上的刻线间隔是相同的,即每格为1mm。所不同的是游标上的刻度 间隔与尺身的刻度间隔的差值不同,因此它们的读数也不同。现就我们公司仅用的一种(0.02mm)作简述如下: 0.02mm游标卡尺尺身每小格为1mm,当两爪合并时,尺身上的49mm刚 好对正游标上的50格(图2-2),则游标每格 = 49 ÷ 50 = 0.98mm,尺身与游标每格相差 = 1 - 0.98 = 0.02mm。使用游标测量读数时,应首先根据游标零线所处位置读出主尺刻度的整数部分。然后判断游标的哪一根刻线与主尺刻线重合,重合的游标刻线序数乘以游标分度值,即可得出主尺刻度的小数部分。主尺读数与游标读数相加即为测得值。 图2-2 0.02mm游标卡尺读数方法

滚动轴承游隙检测方法

什么是游隙?如何测量滚动轴承的游隙? 所谓滚动轴承的游隙,是将一个套圈固定,另一套圈沿径向或轴向的最大活动量。沿径向的最大活动量叫径向游隙,沿轴向的最大活动量叫轴向游隙。一般来说,径向游隙越大,轴向游隙也越大,反之亦然。按照轴承所处的状态,游隙可分为下列三种: 一、原始游隙 轴承安装前自由状态时的游隙。原始游隙是由制造厂加工、装配所确定的。 二、安装游隙 也叫配合游隙,是轴承与轴及轴承座安装完毕而尚未工作时的游隙。由于过盈安装,或使内圈增大,或使外圈缩小,或二者兼而有之,均使安装游隙比原始游隙小。 三、工作游隙 轴承在工作状态时的游隙,工作时内圈温升最大,热膨胀最大,使轴承游隙减小;同时,由于负荷的作用,滚动体与滚道接触处产生弹性变形,使轴承游隙增大。轴承工作游隙比安装游隙大还是小,取决于这两种因素的综合作用。 有些滚动轴承不能调整游隙,更不能拆卸,这些轴承有六种型号,即0000型至5000型;有些滚动轴承可以调整游隙,但不能拆卸,有6000型(角接触轴承)及内圈锥孔的1000型、2000型和3000型滚动轴承,这些类型滚动轴承的安装游隙,经调整后将比原始游隙更小;另外,有些轴承可以拆卸,更可以调整游隙,有7000型(圆锥滚子轴承)、8000型(推力球轴承)和9000型(推力滚子轴承)三种,这三种轴承不存在原始游隙;6000型和7000型滚动轴承,径向游隙被调小,轴向游隙也随之变小,反之亦然,而8000型和9000型滚动轴承,只有轴向游隙有实际意义。 合适的安装游隙有助于滚动轴承的正常工作。游隙过小,滚动轴承温度升高,无法正常工作,以至滚动体卡死;游隙过大,设备振动大,滚动轴承噪声大。 径向游隙的检查方法如下: 一、感觉法 1、有手转动轴承,轴承应平稳灵活无卡涩现象。 2、用手晃动轴承外圈,即使径向游隙只有0.01mm,轴承最上面一点的轴向移动量,也有0.10~0.15 mm。这种方法专用于单列向心球轴承。 二、测量法 1、用塞尺检查,确认滚动轴承最大负荷部位,在与其成180°的滚动体与外(内)圈之间塞入塞尺,松紧相宜的塞尺厚度即为轴承径向游隙。这种方法广泛应用于调心轴承和圆柱滚子轴承。 2、用千分表检查,先把千分表调零,然后顶起滚动轴承外圈,千分表的读数就是轴承的径向游隙。 轴向游隙的检查方法如下: 1、感觉法 用手指检查滚动轴承的轴向游隙,这种方法应用于轴端外露的场合。当轴端封闭或因其他原因而不能用手指检查时,可检查轴是否转动灵活。 2、测量法

粉末冶金含油轴承

粉末冶金含油轴承 来源:大连轴研科技有限公司https://www.360docs.net/doc/ee3924279.html, ------------------------------------------------------------------------------- 含油轴承中用得最多的就是粉末冶金含油轴承,通过制备粉料,成型,烧结和禁制润滑油等主要工序制成的轴套叫做粉末冶金含油轴承 粉末冶金含油轴承的特点是:适于大批量生产,无需切削加工,节约材料,价格便宜,噪声比滚动轴承低,几乎可以不供润滑油,也可以通过轴套壁渗透供油,磨具费用高,不适于少量生产,机械强度较低,摩擦因数偏大 制造这种轴套的材料叫做粉末冶金减摩材料以铁为主,有时加入少量铜,以改善边界润滑性能,他的特点是强度高,价格便宜,但轴承摩擦性能较差,且会生锈,仅适用于低速场合,并且轴颈必须淬火,酮基粉末冶金减磨材料以青铜为主,加入质量分数为百分之六到百分之十的锡,少量的锌和铅 他的特点是不会生锈,在中速,轻载下轴承性能稳定,但价格较贵,铝基粉末冶金减磨材料开发较晚,它的特点是价格较低,强度适中,但耐磨性格抗胶合性较差 铁基和酮基粉末冶金减磨材料已制定了国家标准 参数选择 宽比径因为轴套两端的空隙度一般比中间部位小,故轴套不宜过窄, 压入过盈量应该用压力机将轴套压入轴承座,不许用锤击打,

轴套外径与轴承座孔应为过盈配合 选择轴承座孔径公差时,应使最大过盈不大于二倍平均过盈,最小过盈不小于平均过盈的二分之一 轴套压入轴承座后,轴套孔径会收缩变小,确定轴颈尺寸时,应考虑到该收缩量,轴套孔径收缩量与过盈量轴套内外径尺寸和孔隙度有关, 材料弹性较大,轴承座刚度较大时,需要按最大值计算孔径收缩量,反之,按较小值计算孔内收缩量

气体流速测量技术

热线风速仪 流速计的一种,它的作用原理是将感测元件——一根通以电流而被加热的细金属丝置于通道中,当气体流过它时则将带走一定的热量,此热量与流体的速度有关。其流速的确定,常用的有两种方法:一是定电流法,即加热金属丝的电流不变,气体带走一部分热量后金属丝的温度就降低,流速愈大温度降低得就愈多;测得金属丝的温度则可得知流速的大小。另一种是定电阻法(即定温度法),改变加热的电流使气体带走的热量得以补充,而使金属丝的温度保持不变(也称金属丝的电阻值不变);这时流速愈大则所需加热的电流也愈大,测得加热电流值则可得知流速的大小。 热线长度一般在0.5~2毫米范围,直径在1~10微米范围,材料为铂、钨或铂铑合金等。若以一片很薄(厚度小于0.1微米)的金属膜代替金属丝,即为热膜风速仪,功能与热丝相似,但多用于测量液体流速。热线除普通的单线式外,还可以是组合的双线式或三线式,用以测量各个方向的速度分量。从热线输出的电信号,经放大、补偿和数字化后输入计算机,可提高测量精度,自动完成数据后处理过程,扩大测速功能,如同时完成瞬时值和时均值、合速度和分速度、湍流度和其他湍流参数的测量。热线风速仪与皮托管相比,具有探头体积小,对流场干扰小;响应快,能测量非定常流速;能测量很低速(如低达0.3米/秒)等优点。

热球风速仪 风速计是一种能测低风速的仪器,其测定范围为0.05~10m/s。风速计是由热球式测杆探和测量仪表两部分组成。探头有一个直径0.6mm的玻璃球,球内绕有加热玻璃球用的镍铬丝圈和两个串联的热电偶。热电偶的冷端连接在磷铜质的支柱上,直接暴露在气流中。当一定大小的电流通过加热圈后,玻璃球的温度升高。升高的程度和风速有关,风速小时升高的程度大;反之,升高的程度小。升高程度的大小通过热电偶在电表上指示出来。根据电表的读数,查校正曲线,即可查出所的风速(m/s)。 超声波风速仪 超声波风速风向仪是利用发送声波脉冲,测量接收端的时间或频率(多普勒变换)差别来计算风速和风向的测量传感器或测量仪器。 超声测风是超声波检测技术在气体介质中的一种应用它是利用超声波在空气中传播速度受空气流动(风) 的影响来测量风速的。与常规的风杯或旋翼式风速仪相比这种测量方法的最大特点在于整个测风系统没有任何机械转动部件,属于无惯性测量,故能准确测出自然风中阵风脉动的高频成分,结合现代计算机技术,可在更高层次上揭示自然风的特性对于提高抗风减灾能力和风资源的合理利用有重大意义。

内径测量仪操作规程

内径测量仪操作规程 一) 工作前的准备工作: 打开总电源和出库柜电源。 触摸屏上打到“自动模式”,选择“微控”,启动“微控在线启动”。 打开电脑,启动轴承库程序。 二) 上位机程序选择“智能大库-【入库】”界面。 三) 打开电锁开关,检测分机预热5分钟左右。 二)选择检测分机控制旋钮,测量150轴承把旋钮旋到150位置,否则把 旋钮旋到130位置。 三)样环校准。过程如下: 1、手动状态下(指示灯熄灭),在分机液晶屏上方“0000 0000”的状 态下,按“Ⅰ转”使测量头刚完全出来,立即再按“Ⅰ转”按键, 停止测量头。 2、按检测分机上的“↓”向下翻屏,出现: 内径A 130.004 变动量A 内径B 130.017 变动量B。 内径差: 3、看数据屏右上方有没有出现大写字母“P”,如有按“屏蔽”键, 取消屏蔽状态,才能设置标准环值。

4、把样环正常地套进测量头A中。 5、按“设置”键,使检测分机处于设置状态,数据下方有个光标在 闪动,才能数据输入数值。 6、按数字键“1”、“2”、“9”、“.”、“9”、“8”、“6”,150为“149.977”, 输入标准环A标定值。 7、按“确定”键,保存标准环A值。 8、取下样环然后再套上去,观察分机上的校验值,第一次和第二次 校验的差值应在0.002范围之内。 9、把样环正常地套进测量头B中。 10、按数字键“1”、“2”、“9”、“.”、“9”、“8”、“6”,输入标准环B 标定值。 11、按“确定”键,保存标准环B值。 12、按“设置”键,退出设置状态,光标消失。 13、按“屏蔽”键,锁住标准环值,数据屏右上方出现大写字母“P”。 14、按“出料”键,在分机液晶屏上方“0100 0000”的状态下,按“Ⅰ 转”使测量头退回到“1001 0110”状态下,立即再按“Ⅰ转”按 键,停止测量头。 15、按“自动/手动”键,选择自动状态,自动指示灯亮。 四)提升轴承 把待测量轴承放入测量滑道上,控制柜旋钮打到“在线”位置,轴承挡住光电开关,轴承自动提升。 五)输入轴承的相关信息

轴承游隙标准

轴承游隙 所谓轴承游隙,即指轴承在未安装于轴或轴承箱时,将其内圈或外圈的一方固定,然后便未被固定的一方做径向或轴向移动时的移动量。根据移动方向,可分为径向游隙和轴向游隙。 运转时的游隙(称做工作游隙)的大小对轴承的滚动疲劳寿命、温升、噪声、振动等性能有影响。 测量轴承的游隙时,为得到稳定的测量值,一般对轴承施加规定的测量负荷。 因此,所得到的测量值比真正的游隙(称做理论游隙)大,即增加了测量负荷产生的弹性变形量。 但对于滚子轴承来说,由于该弹性变形量较小,可以忽略不计。 安装前轴承的内部游隙一般用理论游隙表示。 游隙的选择 从理论游隙减去轴承安装在轴上或外壳内时因过盈配合产生的套圈的膨胀量或收缩后的游隙称做“安装游隙”。 在安装游隙上加减因轴承内部温差产生的尺寸变动量后的游隙称做“有效游隙”。

轴承安装有机械上承受一定的负荷放置时的游隙,即有效游隙加上轴承负荷产生的弹性变形量后的以便称做“工作游隙”。 如图1所示,当工作游隙为微负值时,轴承的疲劳寿命最长但随着负游隙的增大疲劳寿命同显著下降。因此,选择轴承的游隙时,一般使工作游隙为零或略为正为宜。 图1工作游隙与疲劳寿命的关系 另外,需提高轴承的刚性或需降低噪声时,工作游隙要进一步取负值,而在轴承温升剧烈时,工作游隙则要进一步取正值等等,还必须根据使用条件做具体分析。 color=#000000>表1深沟球轴承(圆柱孔)的径向游隙 单位um

表2调心球轴承的径向游隙 (1)圆柱孔轴承单位 um

表2调心球轴承的径向游隙 (2)圆锥孔轴承单位 um

表5四列圆柱滚子轴承的径向游隙(圆柱孔)单位 um

含油轴承含油率测试仪

直读式含油轴承含油率测试仪全自动直读含油轴承件,粉末冶金制品,含油轴套等含油固体的密度,含油率!操作简单,数显直读,符合ASTM B311、B328、GB/T5163、JIS Z2505、JIS Z2506、MPIF Standard42、MPIF Standard45、GB/T4196、GB/T4123、GB/T5586、JB/T7780等标准 用于测试粉末冶金、含油轴承、粉末冶金上游工业、粉末冶金下游的电动工具、气动工具、缝纫机、运动器材、计算机风扇、一般风扇、汽机车零件、手工具工业、材料研究实验室.也用于测试测试硫化橡胶、迫紧油封、油环、O型环、D型环、V型环、迫紧、油封等视密度、体密度、湿密度、总体积、开孔体积、闭孔体积、总孔隙率、有效孔隙率、含油率等参数. 操作简便、快速、人性化、精度精准等优点。具有上下限功能,能判定待测物合格与否,并提示报警。 测量理论:含油轴承,即多孔质轴承(Porous Bearing),以金属粉末为主要原料,宝隆粉末冶金厂用粉末冶金法制作的烧结体,其本来就是多孔质的,而且具有在制造过程中可较自由调节孔隙的数量、大小、形状及分布等技术上的优点。含油轴承在非运转状态,润滑油充满其孔隙,运转时,轴回转因摩擦而发热,轴瓦热膨胀使孔隙减小,于是,润滑油溢出,进入轴承间隙。含油轴承具有成本低、能吸振、噪声小、在较长工作时间内不用加润滑油等特点,特别适用于不易润滑或不允许油脏污的工作环境.所应求取的规范中合适的润滑条件必须将内部气孔隙充满润滑油且满足气孔隙的油渗透。如此才可让产品因长时间运转而所产生的热,藉由润滑油给予达到散热效果增长使用的期限。因此我们得知含油量的多寡在含油轴承和其它自行润滑结构性零件中是肩负着如此的重任 技术参数:

测量轴承径向游隙的方法

测量轴承径向游隙的方法 国家和轴承行业都有专门的检测标准(JB/T3573-93)来规定。在轴承制 造工厂都有专用的检测仪器来测量轴承的径向游隙。对于调心轴承的径向游隙,通常采用塞尺测量方法。下面介绍用塞尺测量调心滚子轴承径向游隙的方法: 检测类设备,装配类设备,客户定制设备,轴承检测,零件检测,内径测量、内孔测量外径测量,内径,外径,尺寸测量,测量仪器,自动测量,自动检测,视觉检测,影像检测,跳动检测,自动化设备,自动检测仪,检测设备开发,内孔测量仪,电动车设备 A.将轴承竖起来,合拢。要点:轴承的内圈与外圈端面平行,不能有倾斜。 将大拇指按住内圈并摆动2-3次,向下按紧,使内圈和滚动体定位入座。定位各滚子位置,使在内圈滚道顶部两边各有一个滚子,将顶部两用人才个滚子向内推,以保证它们和内圈滚道保持合适的接触。 B.根据游隙标准选配好塞尺。要点:由轴承的内孔尺寸查阅游隙标准中相对 应的游隙数值,根据其最大值和最小值来确定塞尺中相应的最大和最小塞尺片。C.选择径向游隙最大处测量。要点:轴承竖起来后,机上部外圈滚道与滚子 之间的间隙就是径向游隙最大处。 D.用塞尺测量轴承的径向游隙。要点:转动套圈和滚子保持架组件一周,在 连续三个滚子能通过,而在其余滚子上均不能通过时的塞尺片厚度为最大径向游隙测值;在连续三个滚子上不能通过,而在其余滚子上均能通过时的塞尺片厚度为最小径向游隙测值。取最大和最小径向游隙测值的算术平均值作为轴承的径向游隙值。在每列的径向游隙合格后,取两用人才列的游隙的算术平均值作为轴承的径向游隙。对于单列角接触球轴承、圆锥滚子轴承和推力轴承,其安装的最后工作是调整轴承的轴向游隙。轴承的轴向游隙需要根据安装结构、载荷、工作温度和轴承性能进行精确调整。下面介绍轴向游隙的测量方法和如何调整轴向游隙。

X093JB轴承径向游隙测量仪使用说明书

X093JB轴承径向游隙测量仪使用说明书 一、用途 滚动轴承的径向游隙是轴承的重要质量指标之一,对轴承的振动、寿命和主机精度等都有一定影响,直接关系到用户的安装使用。为了满足滚动轴承径向游隙公差定义及其测量方法的要求,该X093J 型游隙测量仪,在此基础上,进一步合理、完善开发出了X093JB型游隙测量仪,本仪器仅用于深沟球轴承和圆柱滚子轴承。 二、技术指标 1、测量围:径(d)为Ф8-50mm 轴承宽度5~40mm; 2、示值精度:±1.0цm; 3、重复精度:2.0цm 4、量程及分辨率:0-100цm,0.2цm;0-200цm,0.2цm 5、外形尺寸:机械部分:230×240×250mm 电器部分:260×230×150mm 三、测量原理 本仪器的测量原理符合有关行业标准中游隙的定义和测量方法的规定。 如下图所示,本仪器电机带动高精密主轴8旋转,并通过安装在主轴上的专用胎具3带动被测轴承圈旋转(圈由紧固螺母3固定紧,相对主轴不作轴向运动),将传感器5的测头加在轴承外圈上侧中部,上负荷杆在被测轴承上侧中部两侧对称加力,使轴承外圈不作圆周运

动,在主轴旋转时带动轴承钢球落入沟底,通过高精度轴向传感器将测量外圈的位移量转换为电信号,通过交流放大、相敏检波、直流放 大,送入单片机系统。圈旋转一周后,电路经过运算就可显示出外圈单侧的位移量平均值。然后加载下负荷,得出外圈另一个极限位置位 移量。外圈两个极限位置的位移量测量后,其变化值即径向游隙值就可直接显示出来。

本义器径向游隙的测量结果是外圈两个极限位置的测头位移量平均值的差值,因为安装胎具的径向跳动对测头位移量的影响基本相同,经和差运算后,在一定程度土消除了安装胎具的径向跳动所带来的影响,相应地保证了测值的准确性和可靠性. 五、仪器结构及功能 本仪器主要由机械主体、电箱等两部分组成。 1、机械主体零件的名称和功能列表如下:(如上页示意图) 2测量电箱面板的组成与功能如下(示意图)

-临床常用脊柱与四肢特殊检查

(一)椎间孔挤压试验(crushing test of interver tebral foramen) 又称“头顶加压试验”、“斯布灵试验”。病人取坐位,头部微向一侧偏斜;检查者位于病人背后,将手按于其头顶部向下加压,若该侧上肢发生放射性疼痛,则为本试验阳性。阳性提示颈椎病存在。 (二)头顶加压试验(pressing test of vertex)

即“椎间孔挤压试验”。 (三)拉斯特征(Lust sign) 病人取自由体位,检查者观察其体姿,见其常用手托着下颏或头部,使头部保持于向前微倾姿势,即为此征阳性。本征主要见于颈椎结核。 (四)杜加斯征(Dugas sign) 又称“肩内收试验”、“搭肩试验”、“杜加斯试验”。肩关节脱位的主要检查方法之一。①病人屈曲患侧肘关节,手掌搭于对侧肩部,若该肘关节内侧不能贴于胸壁,则为阳性。②病人屈曲患侧肘关节,并使其同侧紧贴于胸壁上,若患侧手掌触不到对侧肩部,亦为阳性。本征阳性可诊断肩关节脱位。

(五)梳头试验(test of combing) 嘱病人用患侧上肢作梳头动作,若上肢肩部出现疼痛、运动障碍或不能运动,即为本试验阳性。阳性提示肩关节活动受限,可见于肩关节脱位、肱骨外科颈骨折、肩关节周围炎、肱二头肌长头腱鞘炎、肩关节韧带撕裂、肩关节囊粘连、三角肌下滑囊炎、臂丛神经麻痹、腋神经麻痹、乳腺癌根治术后、脑部疾病或外伤以及颈部外伤性高位截瘫等。 (六)方肩(square shoulder)

又称“平坦肩”。肩关节及其肌肉病变的体征之一。嘱病人脱去上衣,两上肢自然下垂。检查者从其正面或后面观察肩的外部形态,见其肩部失去正常圆形膨隆的外观,而如削平成直角,则为方肩。本征可见于肩关节脱位及肩肌萎缩。 (七)肩关节外展试验(abduction test of shoulder joint) 嘱病人脱去上衣,取站立位,一侧上肢做缓慢外展至上举活动,若在某一角度出现疼痛或疼痛加重,则为本试验阳性。阳性表示肩关节及其周围组织有病变,多见于肩关节脱位或骨折、肩关节炎、肩关节粘连、三角肌损伤或三角肌下滑囊炎、冈上肌损伤或冈上肌腱炎以及锁骨骨折。本试验阴性表示病人肩部痛系内脏疾病反射痛。 (八)三角试验(triangle test)

轴承检测方法

轴承检测 轴承故障往往是由于多种因素,所有的设计和制造工艺因素的影响和轴承故障,他们的分析是不容易确定。在正常情况下,在一般情况下,您可以考虑和分析因素和内部因素。 用于调整的主要因素是安装,使用和维护,保养维修,等符合技术要求。安装条件是使用轴承的因素之一是往往造成不正确的安装包各部分之间的状态变化的承重力的首要因素,在异常状态的操作和早期失效。根据轴承的安装,使用,保养,维护的技术要求操作的轴承接触负荷,转速,温度,振动,噪声和润滑状态监测和检查,发现异常立即查找原因,调整回正常。此外,油脂和周围介质的质量,气氛也非常重要的分析测试。 轴承的倒角不决定轴承的质量,但却反映了轴承的加工方法。倒角为黑色,说明经过淬火等热处理,这样轴承的硬度,而有些人认为倒角为黑色不好看是没加工完全,这是误区。 一体保持架比两体好,虽然新工艺都使用一体保持架,但它仅仅是节省了材料,而对回转等性能比两体的差。轴承的倒角不决定轴承的质量,而有些人认为倒角为黑色不好看是没加工完全,这是误区。 内部因素主要是指结构设计,质量的制造工艺和材料,有三个因素决定了轴承的质量: 一、结构设计与先进的同时,将有一个较长的轴承寿命。轴承制造会经过锻造,热处理,车削,磨削和装配的多道工序操作。处理的合理性,先进性,稳定性也会影响轴承的使用寿命。影响轴承的热处理和磨削工艺,往往与轴承的故障有更直接的关系相关的产品质量。近年来,研究轴承的表面层的恶化表明,磨削过程中密切与轴承表面质量相关。 二、轴承材料的冶金质量的影响是主要因素滚动轴承的早期失效。随着冶金技术的进步(如轴承钢,真空脱气等),提高了原材料的质量。原材料质量因素在轴承故障分析中的比重已经明显下降,但它仍然是轴承失效的主要因素之一。选择是否恰当仍是必须考虑的轴承故障分析。 三、轴承安装结束后,为了检查安装是否正确,要进行运转检查。小型机械可以用手旋转,以确认是否旋转顺畅。检查项目有因异物、伤痕、压痕而造成的运转不畅,因安装不良,安装座加工不良而产生的力矩不稳定,由于游隙过小、安装误差、密封摩擦而引起的力矩过大等等。如无异常则可动以开始力运转。如果轴承因某种原因发生严重故障而发,热则应将轴承拆下,查明发热原因;如果轴承发热并伴有杂音,则可能是轴承盖与轴相擦或润滑油脂干枯。此外,还可用手摇动轴承外圈,使之转动,若没有松动现象,转动平滑,则轴承是好的;若转动中有松动或卡涩现象,则说明轴承存在缺陷,此时应进一步分析和查找原因,以确定轴承能否继续使用。 拆卸下轴承检修时,首先记录轴承外观,确认润滑剂的残存量,取样检查用的润滑剂之后,洗轴承。作为清洗剂,普通使用汽油、煤油。 拆下来的轴承的清洗:分粗清洗和细精洗,分别在容器中,先放上金属的网垫底,使轴承不直接接触容器的脏物。粗清洗时,如果使轴承带着脏物旋转,会损伤轴承滚动面,应该加以注意。在粗清洗油中,使用刷子清除去润滑脂、粘着物,大致干净后,转入精洗。 精洗,是将轴承在清洗油中一边旋转,一边仔细地清洗。另外,清洗油也要

轴承的润滑方式

轴承润滑的七种方式 1.油杯滴油润滑 通过油杯中的节油口向轴承滴油进行润滑的一种润滑方式.油杯滴油润滑的优点是结构简单,使用方便,省油。而且供油量可以由节油口进行调节,一般滴油量以每3~8秒一滴为宜,因为,过多的油量会引起轴承温升增加。缺点是对润滑油的粘度有一定要求,不能使用粘度大的润滑油,没有散热功能。油杯滴油润滑适用于低速轻载工作温度较低的场合。 2.油浴(浸油)润滑 把轴承部分浸入润滑油中,通过轴承运转后将油带入到轴承其它部分的一种润滑方式。油浴润滑是使用最为普遍而简便的润滑方式之一。 考虑到油浴润滑时的搅拌损耗及温升,对于水平轴,轴承部分侵入润滑油中的高度应有一定限制,一般将油面控制在轴承最下面滚动体的中心附近。油浴(浸油)润滑,润滑充分,但供油量不易调节,若油箱中没有过滤装置容易把杂质带入轴承内部损伤轴承,油浴(浸油)一般适用于低速或中速场合,在低转速轴承上使用较为普遍。 经验:可分离的加强肋可装在轴承座的底部以减少搅动和/或散热。静态油位应稍低于应用于水平轴的轴承最低滚动体的中心,对于垂直轴,静态油位应覆盖50%-80%的滚动体。如果使用油浴系统轴承的温度比较高可以改为使用滴漏方式,飞溅或循环油系统。 3.飞溅润滑 通过其它运转零件将油飞溅后带入轴承的一种润滑方式。 飞溅润滑供油量不易调节,润滑油面也不能太高,否则容易产生搅拌损耗及温升,还容易将油箱中的杂质带入轴承内部损伤轴承。 在飞溅润滑中,油通过装在轴上的旋转体(叶轮或“抛油环”)飞溅到轴承上,轴承不浸没在油中。 经验:在齿轮箱中,齿轮和轴承经常与作为抛油环的齿轮共用一台油箱。由于齿轮用油的粘度可能与轴承要求的不同,而且油中含来自齿轮的磨损微粒,可分离的润滑系统或方法可供改善轴承寿命。 4.循环油润滑 通过油泵将润滑油从油箱吸油后输送到轴承需要润滑的部位,然后从回油口返回油箱,经过滤后重新使用的一种润滑方式。 循环油润滑润滑充分、供油量容易控制、散热和除杂质能力强。循环油润滑适用于以散热或除杂质为目的的场合,以及高速高温、重载的场合,使用可靠性高。循环油润滑是一种比较理想的润滑方式。但需要独立的供油系统,制造成本相对较高。供油系统由油泵、冷却器、过滤器、油箱、输油管道等组成。

水工模型试验测量技术综述

水工模型试验测量技术综述 摘要:水工模型试验是解决工程实际问题,为理论研究和工程设计提供依据的重要手段。基础数据的准确度与精确度直接关系到试验成果的质量,因此试验中的测量技术非常关键。流速、流量、水位、压力、地形、泥沙含量等是模型试验中测量的主要数据,本文主要介绍了模型试验中这些数据的测量技术及存在的问题。 关键字:水工模型试验测量方法发展现状问题分析 引言 水工模型试验是根据相似原理,按照一定的相似比将需要研究的对象,如河流、水工建筑物等按一定比例缩小后,在缩小的模型中复演与原型相似的水流,进行水工建筑物各种水力学问题研究的实验技术,旨在定性或定量的揭示其运动规律或水力学特性,为理论研究和工程设计等提供依据。 自1870年弗劳德(Froude)首先按水流相似准则进行了船舶模型试验以来,随着水利事业的发展,水工模型试验水平在很大程度上有了提高,在理论设计、模型制作、试验测量、数据处理等方面都有了创新突破和发展。 模型试验中的数据测量对试验结果的质量起着至关重要的作用,数据的精确度和准确度直接关系到科研成果的质量。在水工模型试验中主要需要控制和测量的参数有流速、流量、水位、压力、地形、泥沙等,测量仪器的精度、范围、性能等决定着测量结果的准确性,因而优良的测量技术是模型试验的前提和保障。近年来随着激光技术、超声波技术、计算机技术及数字图像处理技术等先进技术的发展,模型试验测量技术有了较快的发展,但尚存在一些问题有待进一步研究,本文主要论述模型试验测量技术的发展及现在存在的一些问题。1.发展现状 1.1流速测量技术 流体的流速是流场最基本的物理量之一,对流体流动特性的认识很大程度上取决于流场的获得,而大多数描述流场的物理量都直接或间接与流速有关,如环量、涡量、流函数、流速势函数等等。在模型试验中流速的测量非常重要,随着技术的创新突破,流速的测量技术取得了较快的发展,从单点流速测量发展到多点测量,从单向到多向、从稳态向瞬态发展,从毕托管、旋浆流速仪、热线/热膜流速仪、电磁流速仪、超声波多普勒流速仪(ADV)、激

相关文档
最新文档