计算机仿真Matlab 实验报告二
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验二非线性系统的数字仿真实验
一、实验目的
学会用数字仿真方法分析线性和非线性系统的动态特性以及各种典型非线性环节对控制系统动态特性的影响。
二、实验内容
系统模型如习题2.17所示。
根据控制理论分析,该系统将出现振幅为0.3,频率为0.8的自激振荡。
1. 按实验目的、要求和已知条件,建立系统的Simulink模型。
2. 在不引入非线性环节的情况下运行仿真模型,观察纪录系统动态特性的变化。
3. 在同样的条件下,引入滞环继电特性非线性环节,再运行仿真模型,观察纪录该非线性环节对系统过渡过程的影响。
4. 将滞环继电特性非线性环节换成饱和非线性环节,C1仍为0.3,运行仿真模型,观察纪录饱和非线性环节对系统过渡过程的影响。
实验解答:
1.按实验目的、要求和已知条件,建立系统的Simulink模型。
建立Simulink模型如下:
2.在不引入非线性环节的情况下运行仿真模型,观察纪录系统动态特性的变化。
去掉上图中的非线性环节—Relay,得到下图仿真结果:
从图可以看出,开始会有突变,之后趋于稳定。
3. 在同样的条件下,引入滞环继电特性非线性环节,再运行仿真模型,观察纪录该非线性环节对系统过渡过程的影响。
如下,加入了滞环继电特性非线性环节
从图中可以看出,系统产生了自激振荡,可以通过编程找到仿真曲线上的极值点,求出该图线的周期、角频率以及振幅。
通过仿真,由仿真图像可以很明白地看出,产生了自激振荡,且该自激振荡幅度约为0.6,周期约为8,则角频率约为0.8。
仿真结果与题目一致。
4. 将滞环继电特性非线性环节换成饱和非线性环节,C1仍为0.3,运行仿真模型,观察纪录饱和非线性环节对系统过渡过程的影响。
由图可得,仿真曲线的变化趋于缓和,但同时进入稳定的速率变慢。
即加入的饱和环节在系统中起到了限幅的作用。
饱和非线性环节使得系统更加平和的进入了稳定状态。