7.5三角形内角和定理5案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7.5 三角形内角和定理
精讲案
第一环节:情境引入
(1)用折纸的方法验证三角形内角和定理.
实验1:先将纸片三角形一角折向其对边,使顶点落在对边上,折线与对边平行(图6-38(1))然后把另外两角相向对折,使其顶点与已折角的顶点相嵌合(图(2)、(3)),最后得图(4)所示的结果
(1)(2)(3)(4)
试用自己的语言说明这一结论的证明思路。

想一想,还有其它折法吗?
(2)实验2:将纸片三角形三顶角剪下,随意将它们拼凑在一起。

试用自己的语言说明这一结论的证明思路。

想一想,如果只剪下一个角呢?
在证明三角形内角和定理时,用到了把△ABC的一边BC延长得到∠ACD,这个角叫做什么角呢?下面我们就给这种角命名,并且来研究它的性质.
第二环节:探索新知
① 用严谨的证明来论证三角形内角和定理.
② 看哪个同学想的方法最多?
方法一:过A 点作DE ∥BC
∵DE ∥BC
∴∠DAB=∠B ,∠EAC=∠C (两直线平行,内错角相等)
∵∠DAB+∠BAC+∠EAC=180°
∴∠BAC+∠B+∠C=180°(等量代换)
方法二:作BC 的延长线CD ,过点C 作射线CE ∥BA .
∵CE ∥BA
∴∠B=∠ECD (两直线平行,同位角相等)
∠A=∠ACE (两直线平行,内错角相等)
∵∠BCA+∠ACE+∠ECD=180°
∴∠A+∠B+∠ACB=180°(等量代换)
第三环节:反馈练习
(1)△ABC 中可以有3个锐角吗? 3个直角呢? 2个直角呢?若有1个直角另外两角有什么特点?
(2)△ABC 中,∠C=90°,∠A=30°,∠B=?
(3)∠A=50°,∠B=∠C ,则△ABC 中∠B=?
(4)三角形的三个内角中,只能有____个直角或____个钝角. A B C D E A B C E
D。

相关文档
最新文档