新课标人教A版高中数学必修算法案例(1) 课件
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
完整的过程 8251=6105×1+2146
例2 用辗转相除法求225和135的最大公约数 225=135×1+90
6105=2146×2+1813
135=90×1+45
2146=1813×1+333 1813=333×5+148
90=45×2
显然45是90和45的最大公约数,也就是 225和135的最大公约数
第三步:把a-b的差赋予r; 第四步:如果b>r, 那么把b赋给a,把r赋给b; 否则把r赋给a,执行第二步;
第五步:输出最大公约数b.
(3)程序框图 (4)程序
INPUT “a,b=“;a,b WHILE a<>b
r=a-b IF b>r THEN a=b b=r ELSE a=r END IF WEND PRINT b END
(2)从结果体现形式来看,辗转相除法体现结果 是以相除余数为0则得到,而更相减损术则以减数与 差相等而得到。
•
1.情节是叙事性文学作品内容构成的 要素之 一,是叙 事作品 中表现 人物之 间相互 关系的 一系列 生活事 件的发 展过程 。
•
2.它由一系列展示人物性格,反映人物 与人物 、人物 与环境 之间相 互关系 的具体 事件构 成。
(1)算理:所谓辗转相除法,就是对于给定 的两个数,用较大的数除以较小的数。若余 数不为零,则将余数和较小的数构成新的一 对数,继续上面的除法,直到大数被小数除 尽,则这时较小的数就是原来两个数的最大 公约数。
(2)算法步骤 第一步:输入两个正整数m,n(m>n). 第二步:计算m除以n所得的余数r. 第三步:m=n,n=r. 第四步:若r=0,则m,n的最大公约数等 于m;否则转到第二步. 第五步:输出最大公约数m.
所以,18和30的最大公约数为6
2 18 30 3 9 15 35
2、除了用这种方法外还有没有其它方法? 算出8251和6105的最大公约数.
辗转相除法(欧几里得算法)
观察用辗转相除法求8251和6105的最大公约数的过程
第一步 用两数中较大的数除以较小的数,求得商和余数 8251=6105×1+2146
第一步:任意给定两个正整数;判断他们是否都是 偶数。若是,则用2约简;若不是则执行第二步。
第二步:以较大的数减较小的数,接着把所得的差 与较小的数比较,并以大数减小数。继续这个操作, 直到所得的减数和差相等为止,则这个等数就是所 求的最大公约数。
例3 用更相减损术求98与63的最大公约数
解:由于63不是偶数,把98和63以大数减小数, 并辗转相减
•
8.少年时阅历不够丰富,洞察力、理 解力有 所欠缺 ,所以 在读书 时往往 容易只 看其中 一点或 几点, 对书中 蕴含的 丰富意 义难以 全面把 握。
•
9.自信让我们充满激情。有了自信, 我们才 能怀着 坚定的 信心和 希望, 开始伟 大而光 荣的事 业。自 信的人 有勇气 交往与 表达, 有信心 尝试与 坚持, 能够展 现优势 与才华 ,激发 潜能与 活力, 获得更 多的实 践机会 与创造 可能。
m=n
r< >0? 是 否
输出n
程序
INPUT “m,n=”;m,n r=m MOD n WHILE r< >0
m=n n=r r=m MOD n WEND PRINT n END
结束
《九章算术》——更相减损术
算理:可半者半之,不可半者,副置分母、子 之数,以少减多,更相减损,求其等也,以等 数约之。
结论: 8251和6105的公约数就是6105和2146的公约数, 求8251和6105的最大公约数,只要求出6105和2146的公 约数就可以了。
第二步 对6105和2146重复第一步的做法 6105=2146×2+1813 同理6105和2146的最大公约数也是2146和1813的最大 公约数。
一个循环结构。
m=n×q+r
用程序框图表示出右边的过程
8251=6105×1+2146
r=m MOD n m=n n=r
r=0?
否
是
6105=2146×2+1813 2146=1813×1+333 1813=333×5+148
333=148×2+37 148=37×4+0
1、辗转相除法(欧几里得算法)
98-63=35 63-35=28 35-28=7 28-7=21 21-7=14 14-7=7
98=63*1+35 63=35*1+28 35=28*1+7 28=7*4+0
所以,98和63的最大公约数等于7
练习:用更相减损术求两个正数84与72的最大公约数.
先约简,再求21与18的最大公约数,然后乘 以两次约简的质因数4
2、更相减损术
(1)算理:所谓更相减损术,就是对于给 定的两个数,用较大的数减去较小的数,然 后将差和较小的数构成新的一对数,再用较 大的数减去较小的数,反复执行此步骤直到 差数和较小的数相等,此时相等的两数便为 原来两个数的最大公约数。
(2)算法步骤 第一步:输入两个正整数a,b; 第二步:若a不等于b ,则执行第三步;否则转 到第五步;
333=148×2+37
思考1:从上面的两个例子可以看出计算 的规律是什么?
148=37×4+0
ቤተ መጻሕፍቲ ባይዱ
S1:用大数除以小数
显然37是148和37的最大公约数, S2:除数变成被除数,余数变成除数
也就是8251和6105的最大公约
数
S3:重复S1,直到余数为0
辗转相除法是一个反复执行直到余数等于0停止的步骤,这实际上是
•
3.把握好故事情节,是欣赏小说的基础,也是整 体感知 小说的 起点。 命题者 在为小 说命题 时,也必 定以情 节为出 发点,从整体 上设置 理解小 说内容 的试题 。通常 从情节 梳理、 情节作 用两方 面设题 考查。
•
4.根据结构来梳理。按照情节的开端 、发展 、高潮 和结局 来划分 文章层 次,进而 梳理情 节。
(3)程序框图 (4)程序
INPUT “m,m=”;m,n DO
r=m MOD n m=n n=r LOOP UNTIL r=0 PRINT m END
开始
输入m,n r=m MOD n
m=n
n=r 否
r=0? 是
输出m 结束
开始 输入m,n
程序 框图
r=m MOD n
r=m MOD n n=r
感谢观看,欢迎指导!
•
5.根据场景来梳理。一般一个场景可 以梳理 为一个 情节。 小说中 的场景 就是不 同时间 人物活 动的场 所。
•
6.根据线索来梳理。抓住线索是把握 小说故 事发展 的关键 。线索 有单线 和双线 两种。 双线一 般分明 线和暗 线。高 考考查 的小说 往往较 简单,线 索也一 般是单 线式。
•
7.阅历之所以会对读书所得产生深浅 有别的 影响, 原因在 于阅读 并非是 对作品 的简单 再现, 而是一 个积极 主动的 再创造 过程, 人生的 经历与 生活的 经验都 会参与 进来。
数学必修③
1.3 算法案例(1) 辗转相除法与更相减损术
1. 回顾算法的三种表述: 自然语言
程序框图 (三种逻辑结构) 程序语言 (五种基本语句) 2. 思考: 小学学过的求两个数最大公约数的方法?
先用两个公有的质因数连续去除,一直除到所得的 商是互质数为止,然后把所有的除数连乘起来.
1、求两个正整数的最大公约数 求18和30的最大公约数
开始
输入a,b
否 a≠b?
是
r=a-b
否
a=r
b>r?
是
a=b
b=r 输出b
结束
例3、求175、100、75这三个数的最大公 约数。
思路分析:求三个数的最大公约数可以先求出两个 数的最大公约数,第三个数与前两个数的最大公约 数的最大公约数即为所求。
小结
比较辗转相除法与更相减损术的区别
(1)都是求最大公约数的方法,计算上辗转相除 法以除法为主,更相减损术以减法为主,计算次数 上辗转相除法计算次数相对较少,特别当两个数字 大小区别较大时计算次数的区别较明显。