3.3 二元一次不等式(组)与简单的线性规划问题(优秀经典公开课比赛教案及练习解答)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第5课时 课题: §3.3.1二元一次不等式(组)与平面区域(1)

【教学目标】

1.知识与技能:了解二元一次不等式的几何意义,会用二元一次不等式组表示平面区域; 2.过程与方法:经历从实际情境中抽象出二元一次不等式组的过程,提高数学建模的能力; 【教学重难点】

用二元一次不等式(组)表示平面区域; 【教学过程】 一.课题导入

1.从实际问题中抽象出二元一次不等式(组)的数学模型 课本第82页的“银行信贷资金分配问题”

教师引导学生思考、探究,让学生经历建立线性规划模型的过程。 在获得探究体验的基础上,通过交流形成共识: 二.讲授新课

1.建立二元一次不等式模型 把实际问题 u u u u u r 转化 数学问题:

设用于企业贷款的资金为x 元,用于个人贷款的资金为y 元。 (把文字语言 u u u u u r 转化 符号语言)

(资金总数为25 000 000元)⇒25000000x y +≤ (1) (预计企业贷款创收12%,个人贷款创收10%,共创收30 000元以上)

⇒(12%)x+(10%)y 30000≥ 即12103000000x y +≥

(2)

(用于企业和个人贷款的资金数额都不能是负值)⇒0,0x y ≥≥ (3) 将(1)(2)(3)合在一起,得到分配资金应满足的条件:

25000000

121030000000,0x y x y x y +≤⎧⎪

+≥⎨⎪≥≥⎩

2.二元一次不等式和二元一次不等式组的定义

(1)二元一次不等式:含有两个未知数,并且未知数的最高次数是1的不等式叫做二元一次不等式。

(2)二元一次不等式组:有几个二元一次不等式组成的不等式组称为二元一次不等式组。(3)二元一次不等式(组)的解集:满足二元一次不等式(组)的x和y的取值构成有序实数对(x,y),所有这样的有序实数对(x,y)构成的集合称为二元一次不等式(组)的解集。

(4)二元一次不等式(组)的解集与平面直角坐标系内的点之间的关系:二元一次不等式(组)的解集是有序实数对,而点的坐标也是有序实数对,因此,有序实数对就可以看成是平面内点的坐标,进而,二元一次不等式(组)的解集就可以看成是直角坐标系内的点构成的集合。

3.探究二元一次不等式(组)的解集表示的图形

(1)回忆、思考

回忆:初中一元一次不等式(组)的解集所表示的图形——数轴上的区间

思考:在直角坐标系内,二元一次不等式(组)的解集表示什么图形?

(2)探究

从特殊到一般:

先研究具体的二元一次不等式x-y<6的解集所表示的图形。

如图:在平面直角坐标系内,x-y=6表示一条直线。平面内所有的点被直线分成三类:

第一类:在直线x-y=6上的点;

第二类:在直线x-y=6左上方的区域内的点;

第三类:在直线x-y=6右下方的区域内的点。

设点是直线x-y=6上的点,选取点,使它的坐标满足不等式x-y<6,请同学们完成课本第83页的表格,

横坐标x -3 -2 -1 0 1 2 3 y

点P的纵坐标

1

y

点A的纵坐标

2

并思考:

当点A与点P有相同的横坐标时,它们的纵坐标有什么关系?

根据此说说,直线x-y=6左上方的坐标与不等式x-y<6有什么关系?

直线x-y=6右下方点的坐标呢?

学生思考、讨论、交流,达成共识:

在平面直角坐标系中,以二元一次不等式x-y<6的解为坐标的点都在直线x-y=6的左上方;反过来,直线x-y=6左上方的点的坐标都满足不等式x-y<6。

因此,在平面直角坐标系中,不等式x-y<6表示直线x-y=6左上方的平面区域;如图。 类似的:二元一次不等式x-y>6表示直线x-y=6右下方的区域;如图。 直线叫做这两个区域的边界 由特殊例子推广到一般情况: (3)结论:

二元一次不等式Ax+By+C >0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线) 4.二元一次不等式表示哪个平面区域的判断方法

由于对在直线Ax+By+C=0同一侧的所有点(y x ,),把它的坐标(y x ,)代入Ax+By+C ,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断Ax+By+C >0表示直线哪一侧的平面区域.(特殊地,当C ≠0时,常把原点作为此特殊点)

【应用举例】

例1 画出不等式44x y +<表示的平面区域。

解:先画直线44x y +=(画成虚线). 取原点(0,0),代入x +4y-4,∵0+4×0-4=-4<0,

∴原点在44x y +<表示的平面区域内,不等式44x y +<表示的区域如图:

归纳:画二元一次不等式表示的平面区域常采用“直线定界,特殊点定域”的方法。特殊地,当0≠C 时,常把原点作为此特殊点。

变式1、画出不等式1234≤-y x 所表示的平面区域。 变式2、画出不等式1≥x 所表示的平面区域。

例2 用平面区域表示.不等式组3122y x x y <-+⎧⎨<⎩

的解集。

分析:不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式

所表示的平面区域的公共部分。

解:不等式312y x <-+表示直线312y x =-+右下方的区域,2x y <表示直线

2x y =右上方的区域,取两区域重叠的部分,如图的阴影部分就表示原不等式组的解集。

归纳:不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分。

变式1、画出不等式04)(12(<+-++)y x y x 表示的平面区域。

变式2、由直线02=++y x ,012=++y x 和012=++y x 围成的三角形区域(包括边界)用不等式可表示为 。 三.随堂练习

四.课时小结

1.二元一次不等式表示的平面区域.

2.二元一次不等式表示哪个平面区域的判断方法. 3.二元一次不等式组表示的平面区域. 五.作业

课后反思:应用列取的方法帮助学生理解不等式的解是一个平面区域是一个好的方法。

第6课时 课题: §3.3.1二元一次不等式(组)与平面区域(2)

【教学目标】

1.知识与技能:巩固二元一次不等式和二元一次不等式组所表示的平面区域;能根据实际问题中的已知条件,找出约束条件;

2.过程与方法:经历把实际问题抽象为数学问题的过程,体会集合、化归、数形结合的数

相关文档
最新文档