酶法合成研究进展

酶法合成研究进展
酶法合成研究进展

β-内酰胺抗生素的酶法合成研究进展β-内酰胺抗生素经过多年的发展,己成为抗生素中的最主要类型之一。由

于具有良好的抗菌效力,较低的毒副作用,在临床上广泛应用,其发展非常迅速。现全世界耗用量已过万吨,预计今后还会增长。其中,青霉素和头孢菌素为最重要的两大类β-内酰胺抗生素。酶法合成技术始于20世纪60年代末70年代初,经过 30多年的发展,现在酶缩合反应技术、产品分离以及固定化酶技术等方面取得很大的发展,配套技术日益完善,具备了大规模工业化生产的条件。

全球著名的β-内酰胺抗生素生产厂家如荷兰DSM公司已有酶法合成的商品头孢氨苄、阿莫西林等产品面世。由于酶法应用于β-内酰胺抗生素合成,不仅可减少反应步骤,而且还可减少废弃物的产生,有利于保护环境,降低生产成本,产品质量优异,所含杂质极少。因此,21世纪β-内酰胺抗生素的酶法合成将是发展的必然趋势。

我国酶法合成研究起步并不晚,但至今仍未形成大规模工业化生产,与国外先进厂家差距较大。随着我国经济快速发展,人们对自身居住环境的要求,政府对环保的重视,政府和越来越多的企业加大“绿色化学制药”的研究开发,特别是加快工业化生产的推进进程。现将近年来β-内酰胺抗生素合成研究、产品的分离纯化、酶反应器研究进行概述。

1 现状

青霉素中如氨苄西林、阿莫西林等,头孢菌素中如头孢氨苄、头孢羟氨苄、头孢克洛、头孢丙烯、头孢唑林等,这些产品有化学半合成法(简称化学法)和酶半合成法(简称酶法)。化学法是将母核与侧链以化学法缩合,现在世界上绝大多数生产这些产品的企业使用的是化学法,常用的方法有酰氯法、混合酸酐法、Vilsmeier法及活性醋法。酶法则是将母核与侧链通过酶催化缩合。化学法需要较多的有机化学原料(如溶剂二氯甲烷、吡啶、二甲苯胺),反应条件苛刻,如需无水条件,反应温度低(有的需低至零下90℃),反应步骤多,产生大量的三废需处理。

这些产品酶法合成技术自1969年开始报道,但由于当时酶的性能较差,分离纯化技术也一直未能很好的解决,因此多年来酶法合成技术仍处于研究和试生产阶段。近年来,随着生物工程技术和固定化酶技术的快速发展,酶法制备β-内酰胺抗生素的技术也不断得到提高。

2 酶催化合成研究进展

2.1 酶催化酰胺化缩合反应

酶法制备β-内酰胺抗生素酰胺化缩合反应的研究涉及的品种有氨苄西林、阿莫西林、头孢氨苄、头孢拉定、头孢羟氨苄、头孢唑林、头孢丙烯、头孢克洛等。

酶催化缩合反应类型一般有两类,一类为热力学控制的酶催化缩合反应,另一类为动力学控制的酶催化缩合反应。

(1)热力学控制的酶催化缩合反应

其特点是不必活化酰基配体,废物产生少。Schroen等研究了不同pH、溶剂浓度和温度条件下,热力学控制的头孢氨苄酶法合成。pH 5-8,酶的稳定性

较好;pH 4,酶的活性大大减弱;在水中直接合成,只有很少量的头孢氨苄生成,加入与水互溶的有机溶剂(甲醇和三甲醇二甲醚)有一定好的效果,头孢氨苄平衡浓度增加2-3倍,最大为0.25mmo1/L (36%三甲醇二甲醚,30℃,3d)。研究了不同侧链对产品平衡浓度影响,侧链有苯乙酸、α-溴苯乙酸、L-马来酸、D-马来酸、对羟基马来酸、吲哚乙酸。研究发现,当侧链为苯乙酸,产品平衡浓度最大 (2.8mmol/L),当侧链带有α羟基苯乙酸(即马来酸),产品平衡浓度小(最小0.6mmol/L)。结果表明,侧链结构对产品平衡浓度影响很大。酶可以是游离酶,也可以是固定化酶,来源E.coli。虽然,热力学控制的头孢氨苄酶法生产头孢氨苄,由于产品平衡浓度低,应用价值不大,但提示对某些β-内酰胺抗生素,由于侧链结构特性,热力学控制的酶催化缩合有可能实施。

Diender等报道了热力学控制阿莫西林酶法合成,在水溶液中,加入青霉素G酰化酶(来源E.coli),同时加入有机溶剂,提高阿莫西林合成平衡常数和合成缩合收率。

Ulijn等报道,以青霉素酰化酶(粗酶,游离态)为催化剂,通过沉淀产品制备酸性和两性离子β-内酰胺抗生素的研究。将苯乙酸和氨水溶液、底物6-APA (悬浮物)直接加入到反应器中,加入酶催化剂,一边反应一边将产品沉淀。这种热力学控制酶催化反应对青霉素G可行,但对两性β-内酰胺抗生素阿莫西林则不行。研究发现,通过加人某些相反离子,使其有利沉淀。阿莫西林阴离子与Zn2+阳离子形成溶解性差的盐。 Zn2+离子加入尽管使β-内酰胺降解,但使缩合收率增加至少30倍,产品平衡浓度可达30mmol/L。

由于热力学控制的酶催化缩合β-内酸胺抗生素反应,现阶段缩合收率还较低,应用价值还不大。

(2)动力学控制的酶催化缩合反应

此类反应酰基配体需活化,而酰基配体活化一般是形成酰胺类化合物或酯类化合物。Vroom报道,将苯甘氨酸、对羟基苯甘氨酸制成相应的酰胺衍生物,在青霉素酰化酶作用下,此酶固定在包含凝胶和由氨基酸组成的多聚体上,酶来源于Escherichia coli、Acetobacter pasteuri- anum、Xanthomonas citrii、Kluyvera citrophila、Bacillus megaterium、Alcaligenes faecalis, 反应温度0-35℃,最适为10℃,pH5-9,合成了头孢氨苄、头孢羟氨苄、氨苄西林、阿莫西林。用此方法,也可合成头孢拉定、头孢克洛、头孢丙烯。Boesten等报道,7-ADCA与苯甘氨酰胺缩合得到头孢氨苄,并将母核7-ADCA 从母液中回收。

van Doren报道将底物母核通过pH调节,使其达到过饱和浓度,在青霉素酰化酶(最好固定化)作用下(酶来源Acetobacter pasterurianuyn、Alcaligenes faecalis、Bacillus megaterium、Escherichia coli、Fusarium oxysporum、Xanthomonas citri等),与相应侧链酰胺缩合,得到产品。这种方法比不将底物母核调到过饱和浓度的转化率高10%左右,母核与侧链摩尔比不大于2.5。用此方法合成了头孢克洛、头孢氨苄。

侧链形成酯类化合物中,形成甲酯的较多。Youshko等报道,6-APA与侧链苯甘氨酸甲酯在青霉素酰化酶ATCC11105(游离态,来源Escherichia coli )作用下,合成氨苄西林。青霉素酰化酶催化水溶液中氨苄西林合成主要由初始底物浓度决定。比较了均相体系中和非均相体系中酶合成反应。在“水溶液-沉淀”非均相体系中,通过形成过饱和溶液进行,然后沉淀产品氨苄西林使得生物催化过程良好进行,使得氨苄西林转化率由6-APA计为93%。最近还有报道,侧链与多醇(如乙二醇)形成含羟基的酯,再与母核在酶的催化下缩合,转化率高达

99%,此方法尤适于头孢丙烯、头孢羟氨苄的合成。

在酶法制备β-内酰胺抗生素的过程中,一般使用经固定化技术处理得到的固定化青霉素酰化酶,而早期使用的固定化细胞等形态的酶,因其形态结构和性能方面的缺陷,目前已不再使用。随着固定化酶技术进步,和对固定化酶在反应中失活原因的深人研究,固定化酶的使用寿命已经大大延长,半数失活(half-life)已经达到50-100批次。

在制备β-内酰胺抗生素的酶缩合反应过程中,不可避免地会产生逆反应——水解反应,即反应产物由于酶的作用再逆分解成原料,这对提高反应产率是很不利的,为提高酶缩合反应的产率,侧链对母核的投料量大大过量,这造成了侧链的过高消耗,并在产品中引入了不需要的杂质,对生产来说仍是不经济的。MauriZi报道酶缩合反应制备头孢氨苄,向反应体系中加人少量的酶抑制剂(苯乙酸、苯氧乙酸、扁桃酸等),可降低酶解作用,同时又不会对酶催化缩合反应产生太大的影响,从而可以得到较高的反应产率,大大降低侧链的投料量,使侧链与母核的投料比例降到2:1以下。

2.2 酶催化氯化反应

酶催化β-内酰胺抗生素合成研究,对其酰化缩合反应报道较多。最近,开始对酶催化氯化反应有研究报道。从微生物Rathayibacter种中分离制备对头孢菌素氯化过氧化物有活性的酶,在pH6.0磷酸盐缓冲液中,加人氯化钠和3%过氧化氢溶液,此种酶可将廉价的头孢氨苄转为价高的头孢克洛。仅有Rathayibacter biopuresis能产生头孢菌素氯化过氧化物酶。现转化率不高,如能提高转化率,将对头孢克洛的生产产生巨大的影响。

2.3“一锅法”酶法研究情况

酶法合成β-内酰胺抗生素,一般一步反应在一个反应器中进行,近年来,有人将几步酶法反应(例如水解/缩合或缩合/缩合等)在一个反应器中进行,这样,不需分离中间体,简化了过程,有利于工业化生产,这将是酶法合成的趋势之一。

Ternadez-Lafuente等报道新型化学酶法合成头孢唑林,通过D-氨基酸氧化酶、戊二酰化酶和青霉素G酰化酶催化作用,生物转化头孢唑林。以头孢菌素C 为起始原料,在水溶性中,经三步酶法和一步化学法合成头孢唑林,不分离纯化中间体,每步酶法收率接近100%。先将头孢菌素C酶法脱乙酰基,然后由 DAO 和GA催化,再由PGA固定化酶(来源Esherichia coli ATCC11105)进一步催化酰化7-ACA,得到7-[(1H-四氮唑)-乙酰氨基]-3-乙酰氧甲基-△3-头孢烷酸,最后与MMTD侧链化学法缩合得到头孢唑林。

Wegman等报道,自苯甘氨酸腈二步酶法转化,一锅法制备头孢氨苄。腈水解酶(来源R. rhodochrous)催化水解D-苯甘氨酸腈为酰胺,然后在青霉素酰化酶(E.C.3.5.1.11)作用下,7-ADCA与 D-苯甘氨酰胺缩合,得到头孢氨苄。然后将1,5-二羟基萘加至反应液中,与头孢氨苄一起结晶,这使得反应液头孢氨苄浓度很低,避免了水解,收率79%,合成/水解比7.7。研究还显示D-苯甘氨酸腈对青霉素G酰化酶有明显选择抑制作用。

Schnien等报道己二酰7-ADCA水解和头孢氨苄酶法合成一锅法完成,所用酶为固定酰胺化酶(来源 Escherichia coli),缩短了头孢氨苄制备过程。

酶水解苯甘氨酸酯或酰胺

己二酰7-ADCA————→7-ADCA————————→头孢氨苄

青霉素酰化酶

3 产品的分离与纯化

在酶法制备β-内酰胺抗生素的技术中,产品的分离及纯化是一项关键性技术。由于所用原料侧链、母核和产品的理化性质相近,采用普通方法难以达到分离提纯的目的,因此该问题一直是酶法合成β-内酰胺抗生素生产的一大障碍。目前使用的回收纯化方法有多种,如:酸碱结晶法、浓缩结晶法、化学法(如萘复合物法)、柱色谱法、纳米滤膜法、两相萃取法等。这些方法各有优缺点,还需进一步的改进和完善。采用酸碱结晶法分离产品,可以不用有机溶剂,避免了对环境的污染。但是此法不能把产品一次分离干净,母液中残留的产品仍需浓缩结晶或其他方法加以回收处理,而且产品纯度也不够理想。

利用头孢菌素与萘类化合物形成复合物的方法比较简单可行,反应体系中的产品几乎可以定量地与萘类化合物形成复合物,从而得到完全分离。此法非常适合有酶存在的反应体系。如能解决回收萘类化合物的问题,这将是一个非常好的分离纯化工艺。

Wegman等报道一锅法制备头孢氨苄,将1,5- 二羟基萘加至反应液,与头孢氨苄一起结晶,这使得头孢氨苄浓度很低,避免了水解,收率79%。

Schroen等报道,在酶法合成头孢氨苄过程中,同时将产品通过与萘类衍生物形成复合物。这些复合物易结晶,复合物为复合剂与头孢氨苄按一定比例组成。复合物的形成利于防止不需要的水解。优化了反应条件,pH7.5,温度25℃为最适宜条件。讨论了产物形成复合物对反应的影响,在大多情况下,有好的影响,水解被抑制。特别是复合剂为1,5-二羟基萘,酶为液态酶,这样可得到高浓度的头孢氨苄。

采用两相萃取法分离提纯产品,是一个较好方法。Hernandez Justiz等报道由动力学控制的酶法(自大肠杆菌的青霉素酰化酶)缩合头孢氨苄,通过连续萃取水溶性产品(周围是酶),从而使收率提高,这样,可避免酶快速水解。将酶以共价键固定于多孔载体上,反应开始前,孔状结构载体可以洗涤,用其中一相填充,这样,当事先平衡好的生物催化剂与第二相混合(那里反应产物将被萃取),固相酶保留于开始选择的第一相中。首次评估了在不同二相体系中头孢氨苄分配系数。在剧烈条件下,可获得高的分配系数。在100%聚二乙醇600-3mol/L,硫酸铵体系中,头孢氨苄被萃取到聚乙二醇体系中,可获最佳分配系数。固定化青霉素酰化酶在硫酸铵中,然后进一步悬浮于100%聚乙醇600 中,这样,可得到90%头孢氨苄合成收率,这里苯甘氨酸甲酯浓度150mmol/L,7-ADCA浓度l00mmo1/L。在这个反应体系中,固相酶留在硫酸铵水相中,由于将产品连续萃取到聚乙二醇相中,使头孢氨苄的水解得到抑制。相反,在单相体系中,由于头孢氨苄的快速水解,综合收率低于55%。

4 酶反应器研究

酶催化法合成β-内酰胺抗生素生物反应器主要有填充床生物反应器、搅拌槽式生物反应器、膜式生物反应器等,现研究较多的是膜式生物反应器。

Tarvascio等报道非均热膜生物反应器用于酶法合成头孢氨苄的情况。一种新的疏水性的催化膜,通过青霉素酰胺化酶E.C.3.5.1.11(来源Escherichia coli)固定在尼龙膜上,尼龙膜与甲基丙烯酸丁酯相连接,六亚甲基二胺和戊二醛分别作间隔基和偶合剂。以青霉素G酰化酶作催化剂,7-ADCA和苯甘氨酸甲酯缩合,对pH、温度、底物浓度等反应条件进行了考查。结果显示事先处理的酶有较好

的结果,增加了固定化酶对pH和温度的稳定性。活化能的计算显示,通过固定化酶的生物催化制备头孢氨苄受到分散限制,导致酶活性和底物亲和性减弱。梯度温度作为减少分散限制性一种方法。实验表明,随着温度梯度变化,头孢氨苄呈线性增加,温度相差3℃,头孢氨苄合成增加 100%,产品制备时间减少50%。非均热生物反应器克服了分散限制性,Km值降至接近自由酶的Km值,减少由于固定化过程酶的失活。

Wenten等报道网状纤维膜反应器的情况,青霉素酰化酶E.C.3.5.1.11固定在膜孔上,连续水解青霉素G。研究了不同操作条件对固定化酶反应的影响。固定化结果显示青霉素酰化酶可固定90%以上。由于6-APA分子比膜孔小,溶质通过膜自由分散。然而,固定化酶截留了35%溶质。而且固定化酰化酶Km (8.04mm)比游离青霉素酰化酶(7.75mm)略高。低流速可以避免胶体形成或酶从膜孔释放,从而最大限度达到转化。

5 结束语

随着人们对β-内酰胺抗生素的酶法合成深人研究,相关的工业技术快速发展,人类对自身生存环境状况日益重视,β-内酰胺抗生素的酶法合成将是21世纪β-内酰胺抗生素发展的必然趋势之一。

纳米复合材料最新研究进展与发展趋势

智能复合材料最新研究进展与发展趋势 1.绪论 智能复合材料是一类能感知环境变化,通过自我判断得出结论,并自主执行相应指令的材料,仅能感知和判断但不能自主执行的材料也归入此范畴,通常称为机敏复合材料。智能复合材料由于具备了生命智能的三要素:感知功能(监测应力、应变、压力、温度、损伤) 、判断决策功能(自我处理信息、判别原因、得出结论) 和执行功能(损伤的自愈合和自我改变应力应变分布、结构阻尼、固有频率等结构特性) ,集合了传感、控制和驱动功能,能适时感知和响应外界环境变化,作出判断,发出指令,并执行和完成动作,使材料具有类似生命的自检测、自诊断、自监控、自愈合及自适应能力,是复合材料技术的重要发展。它兼具结构材料和功能材料的双重特性。 在一般工程结构领域,智能复合材料主要通过改变自身的力学特性和形状来实现结构性态的控制。具体说就是通过改变结构的刚度、频率、外形等方面的特性,来抑制振动、避免共振、改善局部性能、提高强度和韧性、优化外形、减少阻力等。在生物医学领域,智能复合材料可以用于制造生物替代材料和生物传感器。在航空航天领域,智能复合材料已实际应用于飞机制造业并取得了很好的效果,航天飞行器上也已经使用了具有自适应性能的智能复合材料。智能复合材料在土木工程领域中发展也十分迅速。如将纤维增强聚合物(FRP)与光纤光栅(OFBG)复合形成的FRP—OFBG 复合筋大大提高了光纤光栅的耐久性。将这种复合筋埋入混凝土中,可以有效地检测混凝土的裂纹和强度,而且它可以根据需要加工成任意尺寸,十分适于工业化生产。本文阐述了近年来发展起来的形状记忆、压电等几种智能复合材料与结构的研究和应用现状,同时展望了其应用前景。 2.形状记忆聚合物(Shape-Memory Polymer)智能复合材料的研究 形状记忆聚合物(SMP)是通过对聚合物进行分子组合和改性,使它们在一定条件下,被赋予一定的形状(起始态),当外部条件发生变化时,它可相应地改变形状并将其固定变形态。如果外部环境以特定的方式和规律再次发生变化,它们能可逆地恢复至起始态。至此,完成“记忆起始态→固定变形态→恢复起始态”的循环,聚合物的这种特性称为材料的记忆效应。形状记忆聚合物的形变量最大可为200%,是可变形飞行器

酶法合成阿莫西林原理

酶法合成阿莫西林介绍 β-内酰胺抗生素经过多年的发展,己成为抗生素中的最主要类型之一。由于具有良好的抗菌效力,较低的毒副作用,在临床上广泛应用,其发展非常迅速。现全世界耗用量已过万吨,预计今后还会增长。其中,青霉素和头孢菌素为最重要的两大类β-内酰胺抗生素。酶法合成技术始于20世纪60年代末70年代初,经过30多年的发展,现在酶缩合反应技术、产品分离以及固定化酶技术等方面取得很大的发展,配套技术日益完善,具备了大规模工业化生产的条件。全球著名的β-内酰胺抗生素生产厂家如荷兰DSM公司已有酶法合成的商品头孢氨苄、阿莫西林等产品面世。由于酶法应用于β-内酰胺抗生素合成,不仅可减少反应步骤,而且还可减少废弃物的产生,有利于保护环境,降低生产成本,产品质量优异,所含杂质极少。因此,21世纪β-内酰胺抗生素的酶法合成将是发展的必然趋势。我国酶法合成研究起步并不晚,但至今仍未形成大规模工业化生产,与国外先进厂家差距较大。随着我国经济快速发展,人们对自身居住环境的要求,政府对环保的重视,政府和越来越多的企业加大“绿色化学制药”的研究开发,特别是加快工业化生产的推进进程。 酶法产品主要有三大特点: 一是产品含量稳定、变化小,可降低制剂在有效期内的检测风险,并且杂质低,降解速度慢,对制剂的安全性,尤其是特殊制剂的稳定性尤为重要。 二是酶法产品生产批量能够达到化学法产品的2~3倍,这既能够大幅度节省制剂生产商的检验成本,粗略估算原料检测成本能够节约人民币9元/kg;同时,也便于物流、仓储和生产管理。 三是酶法产品是通过生物酶一步到位生产而得,以纯净水为介质,不使用传统化学工艺中的特殊化工原料,有机溶剂的使用量大幅度减少90%,废水排放减少80%,品质更纯净。 1 青霉素酰化酶的发展 青霉素酰化酶是从微生物或其代谢产物中发现的一类具有特定活性的蛋白质。能够产生青霉素酰化酶的微生物广泛分布于细菌、放线菌、真菌和酵母中,如:醋酸杆菌、假单胞菌、粪产碱菌、黄单胞菌、产气单胞菌、大肠杆菌、芽孢杆菌、枝状杆菌、克氏梭菌( Kluyvera) 等,其中常用的有巴氏醋酸杆菌、粪产碱

饲用酶制剂研究进展

饲用酶制剂研究进展 中国农业科学院畜牧研究所汪儆 [摘要] 本文从饲用酶制剂的分类、生产、作用机理和研究展望等方面对饲用酶制剂的最新进展进行了综述,添加饲用酶制剂不仅能有效地消除饲料抗营养因子和毒素的有害作用,而且能全面促进饲粮养分的分解消化和吸收利用,提高畜禽的生产性能和增进畜禽健康。应用饲用酶制剂有利于开发非常规饲料资源,提高常规饲料的利用率,减少畜禽排泄中有机物、氮和磷的排出量,保护和改善生态环境,提高饲料和养殖企业的经济效益,因而饲用酶制剂在实现畜牧业的可持续发展中有着极为广阔的应用前景。 关键词:饲用酶制剂研究进展 将“酶”添加到饲料中提高饲料营养价值和畜禽生产性能的设想和实践已有数十年的历史了,但只是近年来才受到饲料营养学术界和工业界的普遍重视和关注(Leshe.1996)。国外一些著名的饲料营养学术刊物有关饲用酶制剂的文章频频出现,我国一些饲料营养刊物有关饲用酶制剂的研究报告也愈来愈多。 饲用酶制剂作为饲料添加剂的一个品种,为什么近年来受到人们如此的关注和青睐呢? 原因有以下几个方面: 首先,人们逐渐认识到添加饲用酶制剂不仅能有效地消除饲料抗营养因子和毒素的有害作用,而且能全面促进饲粮养分的分解消化和吸收作用,提高畜禽的生长速度、饲料转化效率和增进畜禽健康(Choct,1997)。添加酶制剂的效果已从近年来国内外大量的饲养试验、消化代谢试验得到充分证实。 其次,由于世界人口迅速增加,对肉、蛋、奶的需求量也不断增加,而耕地面积日益减少,饲料资源呈现长期短缺的势态已成为人们的共识。解决的办法,一是开发非常规饲料资源,二是提高现有常规饲料资源的利用率,而从当今饲料营养学的发展来看,饲用酶制剂对这两者均大有用武之地(Pluske,1997)。 第三,人们意识到应用酶制剂有利于保护和改善我们赖以生存的生态环境。减少畜禽排泄物中有机物、氮和磷的排出量,从而减少排泄物中有机物、氮和磷对土壤和水体的污染(Choctet al,1995)。一些发达国家由于日益增强的环保意识,对畜禽类粪便中氮和磷的排放量已从法律上予以严格的限制,因而在客观上促进了饲用酶制剂在饲料和养殖业中的应用。 第四,饲用酶制剂是使用最安全的一种饲料添加剂。迄今为上,国内外尚无一例由于使用饲用酶制剂而引发毒副作用的报道。酶作为蛋白质的一种,是微生物发酵的天然产物,迄今不能人工合成,因而不存在合成化学品的各种弊端,被称为“天然”或“绿色”的添加剂。

磁电复合材料研究进展.

《复合材料学》课程论文 题目:磁电复合材料的研究进展 学生姓名:李名敏 学号: 051002109 学院:化学工程学院 专业班级:材料化学101 电子邮箱: 904721996@https://www.360docs.net/doc/ef17368798.html, 2013年 6 月

磁电复合材料的研究进展 摘要:本文介绍磁电复合材料的研究现状和合成工艺,讨论了磁电复合材料性能的影响因素,最后提出了其目前存在的问题及对今后的展望。 关键词:磁电复合材料铁电相铁磁相纳米材料合成工艺性能 1 引言 材料在外加磁场作用下产生自发极化或者在外加电场作用下感生磁化强度的效应称为磁电效应,具有磁电效应的材料称为磁电材料[1]。而磁电复合材料,它由两种单相材料—铁电相与铁磁相经一定方法复合而成。磁电复合材料的磁电转换功能是通过铁电相与铁磁相的乘积效应实现的, 这种乘积效应即磁电效应。磁电复合材料不仅具有前者的压电效应和后者的磁致伸缩效应,而且还能产生出新的磁电转换效应。这种材料能够直接将磁场转换成电场,也可以把电场直接转换为磁场。这种不同能量场之间的转换一步而成,不需要额外的设备,因此转换效率高、易操作。磁电复合材料不但具有较高的尼尔和居里温度,磁电转换系数大等诸多优点,而且还可被用于微波、高压输电、宽波段磁探测,磁场感应器等领域,尤其是在微波泄露、高压输电系统中的电流测量方面有着很突出的优势。此外,磁电复合材料在智能滤波器、磁电传感器、电磁传感器等领域也潜在着巨大的的应用前景[2]。目前, 磁电复合材料作为一种非常重要的功能材料,已成为当今铁电、铁磁功能材料领域的一个新的研究热点。 2 磁电复合材料的研究现状 2.1 磁电复合材料的历史 1894年法国物理学家居里首先提出并证明了一个不对称的分子体在外加磁场的影响下有可能直接被极化,磁电材料概念就此被提出。随后,一些科学家又指出了从对称性角度来考虑,在磁有序晶体中可能存在与磁场强度成正比的电极化以及与电场强度成正比的磁极化即线性磁电效应。直到20世纪80年代,已经发现50多种具有磁电效应的化合物,以及几十种具有此性能的固溶体。虽然发现了一系列具有磁电效应的单相材料,而这类材料虽然既具有铁电性(或反铁电性),又具有铁磁性(或反铁磁性),然而这些材料的居里温度大都远远低于室温,并且只有在居里温度以下这些材料才会表现出微弱的磁电效应。当环境温度上升到居里温度以上时,磁电系数就迅速下降为零,磁电效应也就随之消失。因此,难以利用单相磁电材料开发出具有实际应用价值的器件。这些局限性使得材料科学工作者们又将目光转移到复合材料上,Van Suchtelen首先提出通过复合材料的乘积效应来获得磁电效应,为制备高性能磁电材料开辟了一条新途径。1978

(转化率)酶法合成头孢氨苄工艺研究

. 516 . 收稿日期:2012-08-10 基金项目:国家863计划(2012AA021204)。 作者简介:王艳艳,女,生于1978年,学士,工程师,主要从事生物酶的制备和应用,E-mail: wyycspc@https://www.360docs.net/doc/ef17368798.html, 文章编号:1001-8689(2013)07-0516-04 酶法合成头孢氨苄工艺研究 王艳艳 袁国强 朱科 王进贤 (石药集团中诺药业(石家庄)有限公司,河北省抗生素工程技术研究中心,石家庄 050041) 摘要:目的 酶法合成氨苄西林工艺优化并回收套用母液中的母核。方法 采用酶催化法,以7-氨基-3-去乙酰氧基头孢烷酸(7-Amino-3-methyl-3-cephem-4-carboxylic acid , 7-ADCA) 为母核,苯甘氨酸甲酯(D-phenylglycine methyl ester, PGM) 为酰基供体,在水相中用固定化青霉素酰化酶(Penicillin Gacylase, PGA)催化合成头孢氨苄(Cephalexin);对投酶量、侧链与底物投料比、反应温度、反应pH 、反应时间及母液中7-ADCA 回收套用等条件进行优化,考察头孢氨苄摩尔收率及产品质量。结果 工艺优化后头孢氨苄摩尔收率85%以上,套用母液中回收的7-ADCA 后头孢氨苄摩尔收率91%以上,高于目前化学法的收率(89%),产品质量合格。结论 酶法合成头孢氨苄工艺反应条件温和,收率高,排放废水中仅含有一些简单的无机盐,对环保无压力,属于绿色合成工艺。 关键词:青霉素G 酰化酶;头孢氨苄;7-ADCA 中图分类号:R978.1+1 文献标识码:A Study on preparation of cephalexin by enzymatic method Wang Yan-yan, Yuan Guo-qiang, Zhu Ke and Wang Jin-xian (Shijiazhuang Pharm.Group Hebei Zhongnuo Pharmaceutical Co., LTD, Hebei Province Antibiotic Engineering Technology Research Center, Shijiazhuang 050041) Abstract Objective To study the process optimization of cephalexin by enzymatic synthesis and recycling the nucleus in the mother liquid. Method Using the enzymatic method, 7-amino-3-methyl-3-cephem-4-carboxylic acid as the nucleus, D-phenylglycine methyl ester as the acyl donor, in the aqueous phase with immobilized penicillin G acylase catalyzed synthesis of cephalexin; temperature, pH, side chain and substrate feed ratio, investment conditions, Such as the amount of enzyme, reaction time and recycling the nucleus in the mother liquid was optimized, examining the yield and quality of the products. Result The molar yield of cephalexin was 85% after process optimization, and the molar yield of cephalexin was 91% after mother liquor was recycled, it was higher than the chenmical method(89%), and product quality was quali ? ed. Conclusion The reaction conditions of enzymatic cephalexin was mild, the yield was higher, waste water of reaction contained only some simple inorganic salt and it decreased the environmental pressure, which belonged to the green synthesis process. Key words Penicillin G acylase; Cephalexin; 7-ADCA 头孢氨苄是广谱抗生素,通过抑制细胞壁的合成,达到杀菌作用,是目前临床使用量较大的一个半合成头孢菌素,是头孢类抗生素中的一个主要品种。 头孢氨苄的传统合成方法是把母核和侧链经过 化学方法结合而得到头孢氨苄[1-2],化学合成过程经过混酐、缩合、水解和结晶等工序,由于需要基团保护、工艺路线较长,工序中用到吡啶、特戊酰氯、N, N-二甲基甲酰胺(DMF)β-萘酚等毒性很大的 中国抗生素杂志2013年7月第38卷第7期 DOI:10.13461/https://www.360docs.net/doc/ef17368798.html,ki.cja.005215

饲料添加剂——微生物复合酶制剂

饲料添加剂——微生物复合酶制剂 摘要:酶是一种专一性极高的生物催化剂,广泛应用于食品、纺织、饲料、医药、造纸等行业领域。本文从酶制剂的发展历史、微生物复合酶制剂的生产方式、影响因素和复合酶制剂最新的研究成果以及16SrRNA菌种鉴定技术在菌种筛选中的应用等几个方面做了简单的综述,并提出了今后的发展方向,指明微生物制备复合酶制剂有巨大的发展潜力。 关键词:研究进展;复合酶;微生物发酵; 16Sr RNA 酶是有活细胞产生的、催化特定生物化学反应的一种生物催化剂,酶制剂是经过提纯、加工后的具有催化功能的生物制品。酶作为一种饲料添加剂具有很多优点:(1)酶催化的反应需要在常温常压下进行,而且具有很高的效率和专一性,它不会有任何有害残留物质;(2)其用量小,经济合算;(3)酶反应条件温和、易操作、能耗低,还可避免因剧烈操作所造成营养成分的损失。因此,酶的应用正日益受到人们的重视。 大量的试验表明,酶制剂主要参与以下活动,发挥其作用:(1)参与细胞壁降解,使酶与底物充分接触,增进现有养分的消化;(2)水解非淀粉多糖(NSP),降解消化道内容物粘度;(3)消除抗营养因子;(4)补充内源酶的不足,改进动物自身肠道酶的作用效果;(5)使某些成分在消化道内的消化位点转移,如NSP的消化由大肠转入小肠,使消化后的营养更易于吸收;(6)改变消化道内菌群分布。 酶的制备主要有2种方法,即直接提取法和微生物发酵生产法。早期的酶制剂是以动植物作为原料,从中直接提取的。由于动植物生长周期长,又受地理、气候和季节等因素的影响,因此原料的来源受到了限制,不适于大规模的工业生产。目前生产上应用的酶制剂中,虽然动、植物来源的酶制剂还在发挥着不可忽视的作用,占很少的一部分,但人们正越来越多地转向以微生物作为酶制备的主要来源,如淀粉酶和蛋白酶的微生物制备已经实现工业化。目前已经能够大规模

浅谈复合酶制剂在面粉工业中的应用前景_杨春玲

粮食加工 2015年第40卷第2期收稿日期:2014-11-18 作者简介:杨春玲(1966-),女,工程师,从事小麦粉新产品开发。 近10年来,我国的面粉加工业得到了飞速地发展,无论是生产规模、设备的先进性,还是产品的档次和质量都得以大大提高。但是,存在着诸多困难和挑战:如生产能力严重过剩,产品供过于求,竞争十分激烈。单纯地使用小麦调整面粉质量,面临国产小麦品质不稳定,进口小麦价格高,货源连续性不确定等问题,因此,多数面粉厂选择使用添加剂作为面粉后处理的手段,但添加剂安全的问题,也越来越受全社会的关注。质量安全成为食品行业头等大事,从溴酸钾到过氧化苯甲酰的禁用,天然、绿色、安全、高效的酶制剂越来越受到面粉行业的广泛应用。 酶是一类具有高度专一性生物催化能力的蛋白质,一般由生物体内提取制成酶制剂。酶制剂在食品工业中属加工助剂类添加剂[1],应用很广泛,如回收副产品、改进食品风味、提高食品质量、研制开发新品种、提高提取速度和产品得率等。生产酶制剂的原料有动物性的、植物性的和微生物性的。随着科学技术的发展,近代酶制剂的主要来源多为微生物性的,目前已知的酶制剂有近百种,常用的有30多种。 在烘焙工业中应用麦芽和微生物α-淀粉酶已有数十年的历史[2],其主要作用是提高发酵速度,改善面包结构,增加面包体积,保持面包在贮存中的新鲜度,延长面包的货架期。酶不仅在烘焙食品和其他面制食品的加工中越来越起着重要的作用,而且,近几年来在面粉工业中的应用愈来愈引起人们的重视。在专用粉的生产中,在通用粉的改造中,各种酶制剂发挥着不可忽视的作用。 1葡萄糖氧化酶 浅谈复合酶制剂在面粉工业中的应用前景 杨春玲 (中央储备粮大连直属库,辽宁大连116033) 摘 要:随着各种专用粉的开发和人们对食品安全要求的提高,各种天然、安全、高效的酶制剂越来越受到面粉 行业的广泛应用。重点介绍了葡萄糖氧化酶的作用机理、使用条件、效果和添加剂量。对其它酶制剂如α-淀粉酶、戊聚糖酶、木聚糖酶、脂肪酶等的应用效果及多酶协同增效作用也进行了论述并指出现阶段酶制剂在面粉中使用应注意的问题。 关键词:酶制剂;面粉工业;应用前景;注意问题中图分类号:TS 211.43 文献标志码:B 文章编号:1007-6395(2015)02-0015-03 葡萄糖氧化酶(GOD )的系统名称为α-D-葡萄糖氧化还原酶。最先于1982年在黑曲霉和灰绿青霉中发现,在有氧参与的条件下,葡萄糖氧化,简式为: 葡萄糖氧化 葡萄糖+O 2+H 2O →葡萄糖酸+H 2O 2, H 2O 2+硫氢键→双硫键→形成更强面筋。 葡萄糖氧化酶(GOD )具有高度的专一性,它只对葡萄糖分子C (1)上的β-羟基起作用,而对C (1) 上的α-羟基几乎不起作用(它对C (1)上的β-羟基的活力比α-羟基的活力大约高出160倍)。将葡萄糖氧化酶用于面粉中,面筋蛋白中的硫基(-SH )将会被氧化形成二硫键(-S-S-),从而增强面团的网络结构,使面团具有良好的弹性和耐机械搅拌特性。 H 2O 2是在面团中起作用的活性成分,夏萍[3]等的研究表明,添加葡萄糖氧化酶(GOD )的面粉和面团的水溶性抽提物中-SH 基含量明显下降,这说明由GOD 催化葡萄糖氧化所产生的H 2O 2氧化了-SH 基,从而也就强化了面团。 商品GOD 是食品级酶制剂,它溶于水,在2~ 4℃条件下,其活力至少可保持1年。GOD 具有较宽的pH 值适应范围,在pH 值3.5~7.0范围内,酶活性 稳定,可耐受50℃以上的高温。在使用中,往往可耐受更低的pH 值环境,例如,在pH 值2.6的可乐饮料和pH 值3.2的葡萄饮料中,30℃时,葡萄糖氧化酶仍具有相当高的稳定性。 近几年来,有关葡萄糖氧化酶在面粉中的应用研究取得了进展。林家永等[4]进行了应用葡萄糖氧化酶与脂酶改进小麦粉质量的实验研究,选用两种典型的强筋面粉和弱筋面粉,结果发现葡萄糖氧化酶和脂酶对面团质地的改善都十分显著,其中葡萄糖氧化酶的效果更为明显,并报告了两种酶在面粉 15

复合材料的最新研究进展

复合材料的最新研究进展 季益萍1, 杨云辉2 1天津工业大学先进纺织复合材料天津市重点实验室 2天津工业大学计算机技术与自动化学院, (300160) thymeping@https://www.360docs.net/doc/ef17368798.html, 摘要:本文主要介绍了当前复合材料的最新发展情况,主要集中在复合材料的增强纤维、加工技术、智能材料和非破坏性检测技术等方面。希望能抛砖引玉,激发研究人员更有价值的创意。 关键词:复合材料,最新进展 1. 引言 人类社会正面临着诸多的问题和需求,如矿物能源、资源的枯竭、环境问题、信息技术以及生活质量等,这推动了复合材料的发展,也促进了各种高新技术的发展。但目前人们已不仅仅局限于新材料的创造、发现和应用上,科学研究已进入一个各种材料综合使用的新阶段,即向着按预定的性能或功能设计新材料的方向发展。并且,在复合材料性能取得飞速发展的同时,其应用领域不断拓宽,性能持续优化,加工工艺不断改善,成本不断降低。 复合材料的独特之处在于其可提供单一材料难以拥有的性能,其最大的优势是赋予材料可剪切性,从而优化设计每个特定技术要求的产品,最大限度地保证产品的可靠性、减轻重量和降低成本。近年以来,复合材料在加工领域中取得了一系列重要的进展,由于计算机辅助设计工具的介入和先进加工技术的开发,使复合材料的市场竞争力有了很大的提高,应用领域不断扩大,除用于结构复合材料外,还大量的进入了功能材料市场。我们观察到,复合材料的发展趋势是[1]: (1)进一步提高结构型先进复合材料的性能; (2)深入了解和控制复合材料的界面问题; (3)建立健全复合材料的复合材料力学; (4)复合材料结构设计的智能化; (5)加强功能复合材料的研究。 近年来,复合材料在增强纤维、加工技术、智能材料和非破坏性检测技术等方面研究较多,并且不断有新的市场应用,能够代表复合材料的最新发展方向。 2. 增强纤维环保化[2] 目前,增强纤维的发展趋势主要是强度、模量和断裂伸长的提高。但随着全球环保意识的风行,复合材料产品也逐渐受到环保方面要求的压力,尤其欧洲地区已有相关规定,热固性复材产品由于无法回收再利用而不易销往欧洲。在树脂之外,复材产品中的增强纤维迄今绝大部分都是无法回收再利用的,包括玻璃纤维、碳纤维、芳纶等,全都是如此。 最近有一种新型增强纤维-玄武岩纤维(Basalt Filament),是由火山岩石所提炼而成的,堪称100% 天然且环保,预期在不久的未来,将会取代相当比例的各种纤维,而加入复合 - 1 -

复合酶制剂的研究及应用进展

复合酶制剂的研究及应用进展 农业大学动物科学技术学院/罗士津瞿明仁 中国农业科学院畜牧兽医研究所动物营养国家重点实验室/铁鹰 原刊于《新饲料》杂志2007年第4期 摘要:复合酶制剂在现代畜牧业生产中的应用非常广泛,而且起到了令人鼓舞的效果,该文综述了饲料中的抗营养因子、复合酶制剂的作用机制、影响复合酶作用效果的因素以及复合酶制剂在畜牧业中的作用效果,旨在为畜牧业生产提供理论依据。 关键词:复合酶制剂;作用机制;生产性能 酶是一种生物催化剂,对畜禽的消化吸收极为重要。酶制剂是应用物理或化学的方法,将生物体产生的酶提取出来制成的产品。近年来,随着中国畜牧业的快速发展和微生物技术在畜牧业上的应用,国已开发生产出许多不同类型的畜禽用复合酶制剂。 复合酶中存在多种酶活,其中主要为非淀粉多糖酶(NSP酶)。复合酶中的各种酶活起着互相补充、相辅相成的作用,在各种酶的共同作用下,动物饲料中的一些抗营养因子被破坏,其抗营养作用消失,因而可以促进动物的生长,提高动物的免疫力,增进动物健康。饲用复合酶中各种酶的种类和比例与动物饲粮有关.不同饲粮所含抗营养因子的种类和比例不同,需要饲用酶制剂所含酶的种类和比例也不同。 1 复合酶制剂分类 抗生素是应用最广泛的抗菌类药物之一。在过去的5O多年中,由于抗生素的长期使用,导致大量耐药菌株的产生,且病原菌抗药性逐年增强,致使疗效下降,剂量提高。为此,世界卫生组织于1994年就细菌耐药性的监测结果给全世界提出了警告:细菌对抗生素产生的耐药性正在以惊人的速度增加。而现有的抗生素药物正在失去原来的疗效。因此,寻求一种高效的绿色产品已成为当今畜牧生产的迫切需求。 酶广泛存在于生物体,参与新代等多种生理功能,其中对微生物细胞壁有水解功能的酶能够溶解微生物细胞壁而使其死亡。由于水解酶的特异性很强,微生物的细胞壁结构和化学组成又存在差异,因此一种酶只能对某一类微生物有水解作用。即使对于某一特定微生物,由于细胞壁化学组成的复杂性,也需要不同类型水解酶的组合,才能有更好的作用效果。 水解酶具有对某一病原菌所有血清型都有效的优点,当几种酶复合后,对不同类型的病原菌均有效,克服了一种抗生素只能预防一种病原菌或一种血清型病原菌的不足,也不存在药物残留和耐药性的问题。 溶菌酶在医药和食品行业中已开始使用,作为畜禽饲料添加剂则刚刚起步,仅前联、法国、德国和美国做了一些初步研究,目前国也已开始了相关研究。而对复合杀菌酶药物的研究,国外均刚刚起步。高效、绿色养殖已成为当今养殖的主题,而复合酶制剂正是这个情况下诞生的产物,复合酶制剂将为养鸡业生产带来福音。

复合酶在饲料中的应用机理及研究进展

复合酶在饲料中的应用机理及研究进展 复合酶制剂是一种安全有效的饲料添加剂,它能有效改善动物生产性能、提高饲料消化率且能减少环境污染,在饲料工业中得到了广泛的应用。 饲用酶制剂作为一种高效、环保、安全的饲料添加剂,能消除和降低饲料中抗营养因子的不良作用,提高饲料利用率。复合酶制剂是采用现代生物技术生产的新型生物活性制剂,主要含有酸性蛋白酶、糖化淀粉酶、纤维素酶和果胶酶等酶系,添加到饲料中,可借助动物消化道内环境,将饲料中的蛋白质、淀粉、纤维素、果胶等成分酶化分解,形成易被动物机体吸收的营养物质,从而提高饲料的消化利用率;减少肠道内氨浓度过高对动物产生的毒性,增加泌乳量和乳脂量,增进消化道功能,减少消化道疾病,提高饲料效益,降低养殖成本。目前复合酶制剂已在饲养业中得到广泛应用。 1 应用现状 1.1 复合酶在鸡饲料中的应用 宋连喜等在41周龄的海兰褐商品蛋鸡基础日粮添加0.1%的复合酶制剂,试验28天后结果表明:可以使产蛋率平均提高6.12%(P<0.05),料蛋比降低11.69%(P<0.05)。张强等人在海兰商品蛋鸡饲料中添加不同比例的复合酶制剂,结果表明:均可提高蛋鸡生产水平。其中添加0.2%的复合酶制剂组产蛋数提高3.92%。 1.2 复合酶在鸭饲料中的应用 在樱桃谷肉鸭日粮中添加肉鸭专用酶制剂,可极显著提高肉鸭质量(P<0.01),能有效促进肉鸭生长,45日龄日增质量提高7.44%(P<0.05),大大促进了饲料转化效率,降低饲料成本,大幅度增加经济效益。同时在使用复合酶制剂时,降低樱桃谷肉鸭日粮营养水平12%也不会对肉鸭的生长性能产生显著影响。添加0.05%中性蛋白酶和0.05%植酸酶饲喂26周龄法国黑羽番鸭56天,能显著提高其产蛋量和受精率,与对照组相比,二者分别提高11.64 %(P<0.01)和10.67%(P<0.01)。说明在种番鸭日粮中添加酶制剂可显著提高生产性能,并改善种番鸭的采食量、料蛋比和蛋质量。 1.3 复合酶在猪饲料中的应用 大量试验结果表明,饲料养分利用率提高:能量6%~8% ,蛋白质、氨基酸7%~13% ;仔猪增重提高8%~15% 。断奶仔猪饲粮中添加0.1%复合酶制剂可降低鱼粉用量2百分点,而对仔猪生长性能和皮肤颜色无显著影响,且有改善皮肤红度和亮度的趋势。可使断奶仔猪的平均日增质量提高6%(P<0.05);饲料报酬提高5.6%(P<0.05),经济效益提高4.4%。添加酶制剂在一定程度上也可促进19千克生长猪的生长,改善饲料利用率。与对照组相比,复合酶制剂组平均日增质量提高9.1%(P>0.05),料重比提高7%(P>0.05)。在不同类型的猪饲粮中添复合酶制剂也取得了很好的效果。 1.4 复合酶在牛羊饲料中的应用 刘云波等(2002)的研究表明,在日粮中添加0.2%的以半纤维素酶、淀粉酶、蛋白酶和木聚糖酶为主的奶牛复合酶,试验组平均乳脂率比对照组增加3.28%。吴建设等的报道中,添加酶制剂使奶牛泌乳量增加的幅度为7.1%~11.8%,本试验添加酶使奶牛泌乳量增加的幅度为5.9%~9.1%。张美莉、郭睿等结果表明,在基础日粮中添加复合酶制剂0.1%、0.2%、0.3%,均能显著提高奶牛的产奶量,日产奶量分别增加了1.8千克、2.8千克、2.4千克,增产率分别为5.9%、9.1%、7.7%。试验组与对照组乳脂率的差异不显著,表明添加复合酶制剂对乳脂率影响很小。日粮中添加0.2%复合酶制剂能影响绵羊瘤胃液VFA,降低瘤胃PH。在试验整个时间段内,NH3浓度都有提高的趋势,瘤胃内是 NH3菌体蛋白的重要来源。提高NH3的浓度可扩大菌体蛋白的合成量,从而促进动物的生长。

阿托伐他汀酶法生产工艺

阿托伐他汀酶法生产工艺 本生物法制备阿托伐他汀原料药,为目前国内最新工艺,仅有两家运用,一家为生产,另一家处于中试阶段。可直接购买A6或A5开始,国内A6或A5已经规模生产,因此成本较自己再合成成本更低。三种酶在国内苏州汉酶有限公司有商品出售,酶代号为供应商代号,若进行战略合作,则全程技术服务可与之深谈。 ATS-6生产工序 一.配比 ATS-5 146.6kG 苯乙烯212.5L (在冷库存放)温度高会聚合 THF 173+104kg 二异丙胺381kg 乙酸叔丁酯406kg 甲基叔丁基醚170+920+1900kg 金属锂26kg 15%盐酸1900+(150-360)L 碳酸氢钠0.5kg 水450+260 ATS-7酶法工艺 一.配比

1.碳酸钠 50kg 2.纯化水 400+400+20L 3.三乙醇胺 8kg 4.15%盐酸适量 5.硅藻土 40kg 6.活性炭 60kg 7.乙酸乙酯 800+400+400+400L 8.饱和盐水 200+200 9.ATS-6 250-300kg(相对146kgATS-5) 10.酶YK 260*1/催化率*0.8 11.酶YM 260*1/催化率*0.9 12.酶YN 260*1/催化率*0.9 ATS-8制备工艺 一.配比 1.ATS-7 一整批(240-280) 2.甲苯 330+460+900L 3.丙烷 260kg 4.甲基磺酸 1.35-2.7L 5.碳酸氢钠 3.3kg 6.水 320+400+400 7.己烷 750L

ATS-8一精 一.配比 1.ATS-8粗品 4批约620-880kg 2.己烷 1400-1500L 3.乙醇 -1 160kg(套用母液加40-80kg) 4.活性炭 9kg 5.己烷乙醇混合液 20L(3:1) ATS-8二精 一.配比 1.AT S-8一精物一整批约600kg 2.己烷-1 1000-1100L 3.乙醇-1 60-120kg 4.乙醇-2 20kg 5.己烷-2 20L 套用母液总收率可以达到100%,按以上投料量月正常生产可以产出9t成品;二异丙胺,乙酸叔丁酯,甲基叔丁基醚可以上塔回收,乙酸乙酯,甲苯,己烷可以套用。 卢红生 2014年3月2日

复合酶制剂的研究进展

河北畜牧兽医饵料夭地复合酶制剂的研究进展 李晓东1.2.董文成1 (1.廊坊市畜牧水产局,河北廊坊065000; 2.中国农业大学农业推广专业,北京100094) 1酶制剂的种类 目前已发现的酶种类很多,生产上可以应用的酶已达到300多种,用于饲料的也有20多种。饲用酶制剂大致分为内源性消化酶、外源性消化酶和复合酶。 1.1内源性消化酶:内源性消化酶是指动物体内能够自身合成并分泌到消化道的一类酶。通常养殖动物内源性酶类不足会直接影响到饲养效果。内源性酶不足有两种情况:一是动物体内酶系不全。如非草食性动物缺乏纤维素酶、植酸酶等。二是生理性内源酶分泌不足。即当动物处于幼年、老年、疾病或应激状态时,也会出现内源酶分泌量的减少。添加内源性酶类似物的结构和性质,可能不同于内源酶,但功能相同,统称内源性酶。该类酶主要包括淀粉酶、蛋白酶和脂肪酶等。 1.2外源性消化酶:畜禽体内不能够合成外源性消化酶,一般需要添加到动物体内。用于消化动物自身不能消化的物质或降解抗营养因子或有害物质等。这类酶主要包括纤维紊酶、半纤维素酶、植酸酶、果胶酶等。 1.3复合酶类:随着单酶制剂生产的工业化发展及价格的降低,复合酶制剂的使用便越来越多.这是一类最常用的酶制剂。复合酶制剂是由一种或几种单一酶制剂为主体,加上其他单一酶制剂混合而成的:可同时降解饲料中多种需降解的抗营养因子及多种养分,最大限度地提高饲料的营养价值。复合酶制剂主要有以下几类:一是以蛋白酶、淀粉酶为主的饲用复合酶,主要用于补充动物内源酶的不足:二是以B一葡聚糖酶为主的饲用复合酶,主要用于以大麦、燕麦为主的饲料原料:三是以纤维素酶、果胶酶为主的饲用复合酶,主要作用是破坏植物细胞壁,释放细胞中的营养物质,同时消除饲料中的抗营养因子,降低胃肠道内容物的黏度,促进动物的消化吸收;四是以纤维素酶、蛋白酶、淀粉酶、糖化酶、B一葡聚糖酶、果胶酶为主的饲用复合酶,综合各种酶类的共同作用,具有更强的辅助消化作用。 2酶制剂在饲料中的作用 2.1直接分解营养物质,提高饲料的利用效率。动物饲料组分多为谷物类及粕类,植物细胞壁的存在影响了养分的消化吸收。具有活性的各种酶能有效地将饲料的一些大分子多聚体分解和消化成动物容易吸收的营养物质或分解成小片段营养物质.使其他消化酶进一步消化一些动物本身难以分解和吸收的大分子物质。 2.2补充内源酶的不足,激活内源酶的分泌消化功能。正常的健康成年动物,在适宜的生产条件下,能分泌足够的消化饲料中淀粉、蛋白质、脂类等养分的酶。但幼年动物或动物处于高温、寒冷、转群、疾病等应激状态时,动物分泌酶的能力较弱或者易出现消化机能紊乱,内源消化酶分泌减少,因此在日粮中添加外源性消化酶,可以补充内源酶的不 足,提高饲料的利用率,改善动物的消化能力,减少应激条 件下生产能力的I:下降.同时还可以促进内涿酶的分泌。 2.3消除抗营养因子,改善消化机能。植物性饲料原料中常常存在一些非淀粉糖、果胶、纤维素聚合物,这些物质 使动物消化道内容物的黏度增加,影响动物对有效营养成 分的消化和吸收。酶制剂中多种酶特别是B一葡聚糖酶、果 胶酶和纤维素酶能够将这些物质分解为小分子物质,从而 降低了消化道的黏度,有效消除这些抗营养因子的不良影 响,改善了动物的消化机能。 2.4提高植酸磷的利用率。由于植物含有相当多的植酸,而植酸容易与磷结合,结合态的磷是不能被动物吸收利 用的.因而降低了磷的利用率。而植酸酶能将该结合物水 解,生成游离态的磷,供动物消化利用。 2.5使某些成分在消化道内的消化位点转移。如NSP的消化有大肠转入小肠.但是消化后的营养更容易吸收。 3研究现状 3.1从世界养禽业来看,肉鸡应用酶制剂比较早并产生了比较好的效益。20世纪80年代,在欧洲,大麦比较便宜, 营养学家研究在肉鸡日粮中添加B一葡聚糖酶以减少日粮 中大麦的负面影响。其结果得到一个黄金定律:大麦+8一葡 聚糖酶=小麦。紧接着,小麦+木聚糖酶=玉米,也得到证实。 20世纪90年代。酶在饲料工业中的应用得到了普遍认可。 1996年,欧洲80%的肉鸡饲料<粘性谷物为能量来源)中含 有纤维素降解酶。越来越多的证据表明。黄金日粮(玉米一豆 粕型日粮)也可以通过酶来改善其营养价值。03.2有关酶制剂对反刍动物作用的研究,始于20世纪60年代,但酶制剂的作用效果添稳定。20世纪90年代中后 期,随着发酵成本的降低,以及更多韵活:性更高酶制剂的问 世,研究者垂薪开始-『外源性酶翩剂对反刍动物作用的研 究。t肉牛应用酶澍剂早期的研究,没有考虑到日粮组成、日 粮类型、酶活性水平或者酶的使用方法等因素对肉牛生产 性能的影响。近年来的研究开始偏重于此。例如:使用不同 水平(0.25--4.01.h)的木聚糖酶和纤维素酶的混合物以及单 一纤维素酶,均能使饲喂紫花苜蓿干草或猫尾草干草的阉 牛的ADG增加30%和36%。但是没有改善饲喂大麦青贮日 粮牛的ADG。当类似的酶制剂添加到95%的大麦日粮中。 牛的饲料效率改善了1l%;而添加到95%的玉米日粮后.牛 的饲料效率并没有改善。与肉牛上的研究一样,外源性酶制 剂对奶牛生产性能的影响也是不稳定的。在荷斯坦牛高粱 日粮中添加复合酶制剂,其产奶量并没有增加。相反,给奶 牛饲喂由50%精料和喷洒两种酶制剂的玉米青贮组成的日 粮。产奶量增加2.Skg/d,奶的成分没有受到影响。 3-3我国饲用酶的研究始于70年代,曾进行过酶曲的生产,并应用于饲料——发酵饲料。此后,酶制剂的研究、开 加o 2005年第21卷第6期

谷胱甘肽化学与酶法合成

谷胱甘肽化学法和酶法合成 1 化学性质 谷胱甘肽(glutathione,GSH)是由谷氨酸、半胱氨酸和甘氨酸结合而成的三肽,半胱氨酸上的巯基为其活性基团(故谷胱甘肽常简写为G-SH)分子式为C10H17N3O6S,分子量为307.32348,熔点为189~193℃,晶体呈无色透明细长拉状,等电点为5.93。GSH有还原型(G-SH)和氧化型(G-S-S-G)两种形式,在生理条件下以还原型GSH占绝大多数。谷胱甘肽还原酶催化两型间的互变。该酶的辅酶为磷酸糖旁路代谢提供的NADPH。 图1 GSH的结构式 2 药理作用 GSH可促进糖、脂肪及蛋白质代谢,加速自由基排泄,保护肝脏的合成、解毒、灭活激素等功能。 3 谷胱甘肽的生产方法 1888年,GSH首先从酵母中分离出来。日本1983年进行了含量较多的GSH 酵母的生产,其后又研究了GSH提取、分离技术及分析检测方法。目前国外实现了GSH规模生产。世界主要的氨基酸制造商Kyowa,Aji-nomoto和Degussa 等都相继投巨资于氨基酸的研究与开发,仅Kyowa 1998年氨基酸的研究与开发就耗费达1.9亿美元,而GSH是其重点之一,Kyowa目前是GSH主要的供应商。目前GSH的主要生产方法有:萃取法、发酵法、酶法和化学合成法。 3.1萃取法 萃取法主要是通过萃取和沉淀的方法从GSH含量比较高的动植物组织中将GSH分离提取的一种方法,GSH的早期生产都是采用萃取法,是生产GSH的经典方法,也是发酵法生产流程中的下游过程基础。其工艺路线如下图:

图2 GSH发酵法工艺路线图 该方法的不足:由于GSH在组织中含量极低,可用原料少,制备的纯度和收率都不高,故在实际生产中应用不广泛。 3.2酶法 在酶催化合成GSH中,几种关键的化合物和条件包括:GS HⅠ和GS HⅡ、氨基酸原料(L-谷氨酸、甘氨酸和L-半胱氨酸)、ATP、保持GS HⅠ和GSHⅡ活性所必需的辅因子(Mg2+)和一个适当的pH值环境。合成中,需求大量ATP,给GSH的工业化生产带来麻烦,大大提高了GSH生物合成的成本,所以只能寻求一个ATP生成系统来藕联ATP消耗系统。两种系统同在一种生物体内的称为自藕联系统,在多种生物体内的称为共藕联系统。自藕联系统研究的比较少,因为很难找到一种生物体同时含有ATP生成系统和ATP消耗系统。 Murata等人发现酒酵解菌(s.cerevisae)中的葡萄糖是最简单的ATP生产系统之一,可以提供足量的ATP用来GSH的生物合成。酶催化法合成GSH的浓度可以达到99/l,但是所用的氨基酸原料比较贵,提高了GSH生物合成的成本。 3.3发酵法 生物发酵法是利用廉价的糖作为原料,利用微生物体内物质的代谢途径来合成GSH的方法。由于发酵法所使用的细菌或酵母容易培养,加之生产方法及工艺的不断改进和完善,因此微生物发酵法已成为目前GSH工业化生产的最普遍方法。在工业上,生物发酵法一般都选用s.eerevisae和Candidautilis为原料进行发酵。 一般情况下,微生物细胞中GSH含量不高,仅为细胞干重的0.1~1.0%。过高含量的GSH容易破坏体内业已平衡的氧化还原环境,GSH是胞内产物,实际生产过程中需要进行提取,较低的含量无疑会大大提高生产成本。因此,发酵法生产GSH的关键问题在于如何提高细胞密度以及细胞内的GSH含量。二者的有机结合将有利于GSH产量的大幅度提高。

复合酶制剂在食品工业中的应用

复合酶制剂在食品工业中的应用 酶制剂作为一类绿色食品添加剂,用于改善食品品质和食品制造工艺,其应用已越来越普遍,品种也不断增多。为了达到理想的酶制剂应用效果,并帮助酶制剂客户有效方便地使用酶制剂,酶制造商针对不同的食品加工应用领域特点,已经开发出各种专用复合酶制剂,把几种酶制剂混合使用往往有协同增效作用,还可减少单一酶的使用量,其在食品中的应用方兴未艾,现就复合酶制剂在食品工业中的研究与应用作一简单介绍。 一、面粉加工小麦、玉米、大麦、高粱、燕麦、荞麦等谷物主要成分是淀粉,其次是蛋白质,在其面食品(包焙烤食品、面条、饼干等)加工中主要使用淀粉酶和蛋白酶,同时木聚糖酶、脂肪酶、葡萄糖氧化酶、转谷氨酰胺酶、脂肪氧化酶、植酸酶等可赋予谷物食品特殊的风味、良好的品质以及增加营养,因此复合型酶制剂是面粉改良剂首选。 1、真菌α-淀粉酶真菌α-淀粉酶由米曲霉或黑曲酶产生,它能从淀粉分子内部切开α-1,4键生成各种寡糖,在长时间作用下,还可切开这些寡糖α-1,4键而生成麦芽糖,故又称麦芽糖生成酶。在面团发酵食品制作过程中,适量加入真菌α-淀粉酶,面粉中的淀粉被水解成麦芽糖,麦芽糖又在酵母本身分泌的麦芽糖酶作用下,水解成葡萄糖供酵母利用,从而为酵母的发酵提供足够的糖源作为营养物质,使面包变得柔软,增强伸展性和保持气体的能力,容积增大,出炉后制成触感良好面包。

2、木聚糖酶木聚糖酶是一种戊聚糖酶,面粉中存在着非淀粉多糖戊聚糖,在面粉中添加木聚糖酶,能使水不溶性戊聚糖增溶,可提高面筋网络的弹性,增强面团稳定性,改善加工性能,改进面包瓤的结构,增大面包体积。因面粉中的水不溶性戊聚糖对面包的品质有消极影响,它使面包体积减小,面包瓤质构变差,面包品质恶化。而水溶性戊聚糖则对面包品质起到积极作用。戊聚糖酶对水不溶性戊聚糖的增溶作用,一定程度上减小了水不溶性戊聚糖的消极影响,改善了面团的操作性能及面团的稳定性,增大了成品体积,提高了成品的质量。 3、葡萄糖氧化酶葡萄糖氧化酶在氧气的存在的条件下能将葡萄糖转化为葡萄糖酸,同时产生过氧化氢。过氧化氢是一种很强的氧化剂,能够将面筋分子中的巯基(-SH)氧化为二硫键(-S-S-),从而增强面筋的强度。提高面团延展性、增大面包体积,可取代对人体有致癌作用的溴酸钾KBrO4。在面条生产中,葡萄糖氧化酶有助面筋蛋白之间形成较好的蛋白质网络结构,增加面条的咬劲。 4、脂肪酶脂肪酶能水解脂肪成单酰甘油和二酰甘油,单酰甘油能与淀粉结合形成复合粉,从而延缓淀粉的老化,在面包使用脂肪氧化酶,使面包增白,改善风味。在面条面团中使用脂肪酶,可使天然脂质得到改性,生成脂质和淀粉复合物,可防止直链淀粉在膨胀和煮熟过程中渗出,减少面团上出现斑点。 5、植酸酶植酸其化学结构为肌醇六磷酸酯,由于分子中含有6个磷酸基团,具有强大的络合能力。植酸与蛋白质,钙、锰、铁等无机盐和维生素等螯合,使它们不能被利用,限制了面粉中无机盐的活性。使用植酸酶,可使面团中植酸水

相关文档
最新文档