数学在其他学科中的应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学在各学科中的作用
当今世界的科技每时每刻都在飞速地发展,物理,化学,生物,建筑,信息技术等等各式各样的学科无一不在现代生活中展现着他们的魅力,,然而,在所有这些学科的背后,还有一门科学在支撑着它们,那就是数学。数学有一种独特的抽象性,正是因为数学抽象,其结论应用十分广
泛。数字由许许多多事物抽象而来,它不代表任何意义,也正是因为它不代表任何意义,所以它可以应用在任何地方。2+3=5不仅适用于人,也适用于书、本、笔等等。
在数学中,同一个方程式完全可能代表着互不相干的事物的某种相同规律。同一个拉普拉斯方程可能代表许多不同的物理现象。某种生物种类群体的数量变化可能与市场某种商品的价格涨落满足同一数学模型。数学在其它学科中有特殊的地位与作用。数学是各门科学的语言。物理定律及原理都是用数学语言描述的,数学在力学与物理学中的地位与作用是人所共知的。
物理学应该是应用数学最多的学科之一,数学公式使描述物理现象变得简单而一般。动力学中最基本的概念——加速度的定义本质上就是一个导数,缺少了导数的概念,又怎么会有加速度的定义呢?解决理想的运动学问题会用到微分方程的概念,微分方程的理论使解决复杂的运动问题变得可能。数学的功底也是一个优秀的物理学家所必备的,在此,我们不妨举两位大物理学家的例子。法拉弟是一位伟大的实验物理学家,他通过实验发现了电场、磁场、电力线、磁力线、电与磁的对称关系等,但他数学功底不够(相对来说),不能把他的实验结果上升为理论(没有可操作性)。而另一位电磁学的大师麦克斯韦确有很好的数学功底,他用微分方程和向量代数等数学方法,完整地揭示上述现象,并于1862年发表了划时代的论文《论物理的力线》,使得这些理论有了广泛的应用。今天的无线广播、电视、雷达通讯,遥控等,都是以它为基础的。所以说,如果没有数学的发展,物理学也难有突破。物理学和数学就像一对亲密无间的伙伴,永远密不可分。而物理学,正是数学在实际学科中应用的最好体现。
信息科学是二十世纪才发展起来的一门科学,我们如今的生活已经处处融入了这门科学。计算机帮我们解决了以往难以解决的复杂问题,互联网让世界变得越来越小,数字通信技术让人与人之间变得很近。而信息科学的基础就是数学,没有布尔代数,如何会有电子系统中0和1编码段?没有矩阵理论,如何解决复杂的工程建设规划问题?没有数学中许许多多的算法,又如何在计算机上展现出美妙的图案?可以这样比喻,信息科学正是在数学的肥沃土壤中长出的一朵美丽娇艳的花。我们作为北邮的大学生,应该充分认识到这一点,注重打好我们自己的良好数学功底,为以后的深造作好准备。
当然,不仅仅是理科才会用到数学,就连艺术也离不开数学。15世纪欧洲文艺复兴时期,绘画艺术之所以能有惊人的发展,正是得益于数学的分支——几何学的进步。一幅画要想逼真生动的展现现实世界,就要用到投影和几何学的原理。达芬奇是文艺复兴时期的代表人物,他不仅是一位画家,也是一位几何学家,发明家和梦想家。它的每一幅作品无一不是建立在严谨的投影规则之上的,也正因为此,他的画才那样细腻,那样准确,那样迷人。此外,雕塑,徽标设计,建筑等等都离不开数学,2006年德国世界杯的徽标就是由几个外切圆组成的笑脸构成的。数学是美的,因为他融入了生活,融入了世界的每一个角落。马克思曾说“只有当一门学科应用了数学之后,它才成为了一门真正的科学”。每一门科学中都体现着数学的价值,在人类即将写下的历史中,数学仍将不断地发展,随之而来的,就是科学和社会的进步。