样本与统计量、数据的简单处理

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
察值。称为样本值或子样观察值。
样本(子样)容量——
样本中所含的个体的数目。
编辑ppt
4
总体与样本
为保证抽取出来的样本能够反映出总体的性质,要求 样本具有代表性,即每个 Xi 与 X 同分布;还要求具有独
立性,即 X1,X2,......Xn是相互独立的。满足以上条件
的样本(子样)称作简单随机样本(子样)。
要获得简单随机样本(子样),对有限总体, 应作有放回的随机抽样,对无限总体或总体相当大 时,也可作无放回的随机抽样。
编辑ppt
5
统计量
当我们不能完全掌握某一总体的分布函数时,只要掌握 了总体的某些数字特征(总体参数),就可基本上确定该总 体的分布,当总体参数也未知时,就只能依据样本对未知数 进行推断。通常我们利用样本构造出某种函数作为推断的基 础。这就是所谓的统计量。
计算样本的特征数(统计量)——
常用的描述分散程度的特征数——
样本方差—— S2 1 n n1i1
2
Xi X
样本标准差—— S
1n n1i1
2
Xi X
极差(全距)—— RMm
标准误——
n
编辑ppt
13
数据的简单处理
计算样本的特征数(统计量)——
常用的描述分散程度的特征数——
四分位差Qd——满足
6 2 . 5 , 6 7 . 5 6 7 . 5 , 7 2 . 5 7 2 . 5 , 7 7 . 5 7 7 . 5 , 8 2 . 5 8 2 . 5 , 8 7 . 5 8 7 . 5 , 9 2 . 5 9 2 . 5 , 9 7 . 5 9 7 . 5 , 1 0 2 . 5
组中点值分别为:6 5 ,7 0 ,7 5 ,8 0 ,8 5 ,9 0 ,9 5 ,1 0 0
一般遵循“上限不在内”的原则
(解决实际问题时,也有出编辑现ppt开口组的情形)
9
数据的简单处理
数据整理(分组)——
(4)计算各组频数和频率,作频数和频率分布表
频数 f i 指落在第 i 组的数据个数,频率为频数与总数据量
统计量——
样本 X1,X2,......Xn对应的不含未知参数的实值函数, 记作:fX1,X2,......Xn. 它本身也是一随机变量。它的分布
称作抽样分布。
编辑ppt
6
常用统计量
设 X1,X2,......Xn是随机变量 X 的一个样本。
样本均值——
X
1 n
n i 1
Xi
通常作为总体 X 的均值的一个估计值。
Qd
Q3 Q1 2
其中:
Q1为第 1 四分位数——满足 PXQ 10.25
即当数据按大小顺序排列后排在第一个四分之一位的数。
Q3为第 3 四分位数——满足 PXQ30.75
编辑ppt
14
计算样本均值和方差时,可利用均值和方差的性质 将数据化简后再运算。
之比:w i
fi n
(5)作频率直方图
要把每一小组的频率用一小矩形的面积去表示,方法是:
以样本值为横坐标,频率/组距为纵坐标,以分组区间为 底,以频率/组距为高作一系列矩形。
பைடு நூலகம்
编辑ppt
10
要把每一小组的频率用一小矩形的面积去表示,方法是: 以样本值为横坐标,频率/组距为纵坐标,以分组区间为 底,以频率/组距为高作一系列矩形。
编辑ppt
3
总体与样本
样本(子样)——
从总体中随机抽取出来的部分个体作成的集合。记为:
X1,X2,......Xn
注意到这里每个 Xi 因随机抽取而随机取值,所以也是 随机变量。抽样完成后得到的确切结果:
x 1 ,x 2 ,. . . . . . x n 是n 维随机变量 X 1 ,X 2 ,. . . . . . X n 的一个观
编辑ppt
2
总体与样本
总体(母体)—— 研究对象的全体。
个体—— 总体中的每一个元素。
在数理统计学中,我们是对总体的一个或若干个数量 指标进行研究,这样,对总体的研究就归结为对随机变量 的研究。以后说到总体时,指的就是它对应的某个或某些 随机变量。
欲研究或推断总体 X 的性质,似乎应对每一个个体逐 一测定,但这样的做法很多时候是不必要或是不可行的。 比如考察广州人的身高、体重,某种导弹的爆炸威力,某 电子元件的寿命等。我们只能在总体中随机抽取部分个体 出来测定。这就是——抽样。
编辑ppt
1
前言
数理统计是应用广泛的一个数学分支, 它以概率论为理论基础,研究如何合理地获 得数据资料,建立有效的数学方法,根据所 获得的数据资料,来研究随机现象的规律性, 对研究对象的性质作出合理的估计和判断。
在这个课程里,我们学习数理统计学的 初步,主要讲述估计与检验等原理,线性回 归与方差分析等统计方法。
频率直方图示意图:
编辑ppt
11
数据的简单处理
计算样本的特征数(统计量)——
常用的描述集中趋势的特征数——
样本均值——
X
1 n
n i 1
Xi
中位数——数据按大小顺序排列后位于中间位置的那个数。
众数——样本中出现次数最多的那个数。
样本几何均值—— Xg n X1X2...Xn
编辑ppt
12
数据的简单处理
样本方差——
S2 1 n n1i1
2
Xi X
通常作为总体 X 的方差的一个估计值。
估计量的 无偏性
样本标准差(均方差)—— S
1n n1i1
2
Xi X
通常作为总体 X 的标准差(均方差)的一个估计值。
编辑ppt
7
数据的简单处理
数据整理(分组)——
(1)根据样本容量 n 确定分组数 k
一般地, 当 30n40时, 5k6 当 40n60时, 6k8 当 60n100时,8k10 当 100n500时,10k20
(2)计算组距(一般采用等距分组,也可据实际情况分组)
组距等于比极差(原始数据中的最大值M与最小值m
之差)除以组数 k 略大的测量单位的整数倍。
如:Mm100654.3755则取组距为 5。
8
8
编辑ppt
8
数据整理(分组)——
(3)确定组限和组中点值 一般地,组的上限与下限应比数据多一位小数。这样可
保证每组所含的原绐数据不重叠。(可据实际问题另作要求)
设现有 50 个原始数据(均是整数),决定分作 8 个小组, 数据中的最大值是 100,最小值是 65 ,
则组距 100654.3755 组距 组数 84 0 1 0 0 6 5 3 5
取 a 6 2 .5 m , b 1 0 2 .5 M 得分组如下:
相关文档
最新文档