费米气体模型

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

费米气体模型

把原子核视同一团气体,视同气体分子的核子(费米子)在半径为R 的核内彼此无相互作用地自由运动,因而可视为在无限深势阱中运动的模型。由此计算核能级并给出激发态的一些有用信息。费米气体模型的成功之处,是揭示了原子核中核子在一定条件下近乎独立的行为,在它的基础上今已发展成为壳层模型。

超级大原子——物质第五态

如果物质不断冷下去、冷下去……一直冷到不能再冷下去,比如说,接近绝对零度(-273.16℃)吧,在这样的极低温下,物质又会出现什么奇异的状态呢?

这时,奇迹出现了——所有的原子似乎都变成了同一个原子,再也分不出你我他了!这就是物质第五态——玻色-爱因斯坦凝聚态(以下简称“玻爱凝聚态”)。

这个新的第五态的发现还得从1924年说起,那一年,年轻的印度物理学家玻色寄给爱因斯坦一篇论文,提出了一种关于原子的新的理论,在传统理论中,人们假定一个体系中所有的原子(或分子)都是可以辨别的,我们可以给一个原子取名张三,另一个取名李四……,并且不会将张三认成李四,也不会将李四认成张三。然而玻色却挑战了上面的假定,认为在原子尺度上我们根本不可能区分两个同类原子(如两个氧原子)有什么不同。

玻色的论文引起了爱因斯坦的高度重视,他将玻色的理论用于原子气体中,进而推测,在正常温度下,原子可以处于任何一个能级(能级是指原子的能量像台阶一样从低到高排列),但在非常低的温度下,大部分原子会突然跌落到最低的能级上,就好像一座突然坍塌的大楼一样。处于这种状态的大量原子的行为像一个大超级原子。打个比方,练兵场上散乱的士兵突然接到指挥官的命令“向前齐步走”,于是他们迅速集合起来,像一个士兵一样整齐地向前走去。后来物理界将物质的这一状态称为玻色-爱因斯坦凝聚态(BEC),它表示原来不同状态的原子突然“凝聚”到同一状态。这就是崭新的玻爱凝聚态。

然而,实现玻爱凝聚态的条件极为苛刻和矛盾:一方面需要达到极低的温度,另一方面还需要原子体系处于气态。极低温下的物质如何能保持气态呢?这实在令无数科学家头疼不已。

后来物理学家使用稀薄的金属原子气体,金属原子气体有一个很好的特性:不会因制冷出现液态,更不会高度聚集形成常规的固体。实验对象找到了,下一步就

是创造出可以冷却到足够低温度的条件。由于激光冷却技术的发展,人们可以制造出与绝对零度仅仅相差十亿分之一度的低温。并且利用电磁操纵的磁阱技术可以对任意金属物体实行无触移动。这样的实验系统经过不断改进,终于在玻色—爱因斯坦凝聚理论提出71年之后的1995年6月,两名美国科学家康奈尔、维曼以及德国科学家克特勒分别在铷原子蒸气中第一次直接观测到了玻爱凝聚态。这三位科学家也因此而荣膺2001年度诺贝尔物理学奖。此后,这个领域经历着爆发性的发展,目前世界上己有近30个研究组在稀薄原子气中实现了玻爱凝聚态。

玻爱凝聚态有很多奇特的性质,请看以下几个方面:

这些原子组成的集体步调非常一致,因此内部没有任何阻力。激光就是光子的玻爱凝聚,在一束细小的激光里拥挤着非常多的颜色和方向一致的光子流。超导和超流也都是玻爱凝聚的结果。

玻爱凝聚态的凝聚效应可以形成一束沿一定方向传播的宏观电子对波,这种波带电,传播中形成一束宏观电流而无需电压。

原子凝聚体中的原子几乎不动,可以用来设计精确度更高的原子钟,以应用于太空航行和精确定位等。

玻爱凝聚态的原子物质表现出了光子一样的特性正是利用这种特性,前年哈佛大学的两个研究小组用玻色-爱因斯坦凝聚体使光的速度降为零,将光储存了起来。

玻爱凝聚态的研究也可以延伸到其他领域,例如,利用磁场调控原子之间的相互作用,可以在物质第五态中产生类似于超新星爆发的现象,甚至还可以用玻色-爱因斯坦凝聚体来模拟黑洞。

随着对玻爱凝聚态研究的深入,又一次彻底的技术革命的号角已经吹响。

突破第五态,创造第六态

物质形态到此就结束了吗?还没有。

在过去几年内,玻爱凝聚态只能由一类原子形成,这就是玻色子,而费米子是不能形成的。什么是费米子?什么是玻色子?我们需要先走入由基本粒子组成的原子世界。

很早以前,人们就知道原子是由电子和原子核组成,而原子核又由质子和中子组成。20世纪初,物理学家们发现了正电子和光子,开始探寻更小的粒子,发现原子核还可以分成更小的“小不点儿”:中微子、介子、超子、变子等等,物理学家把它们统称为“基本粒子”。早期发现的基本粒子根据各自遇到的“力”可以被分

为4类:光子,轻子,介子和重子。20世纪80年代又发现了胶子,W玻色子和Z玻色子。这些基本粒子在宇宙中的“用途”可以这样表述:构成实物的粒子(轻子和重子)和传递作用力的粒子(光子、介子、胶子、W和Z玻色子)。在这样的一个量子世界里,所有的成员都有标定各自基本特性的四种量子属性:质量、能量、磁矩和自旋。

这四种属性当中,自旋的属性是最重要的,它把不同将粒子王国分成截然不同的两类,就好像这个世界上因为性别将人类分成了男人和女人一样意义重大。粒子的自旋不像地球自转那样是连续的,而是是一跳一跳地旋转着的。根据自旋倍数的不同,科学家把基本粒子分为玻色子和费米子两大类。费米子是像电子一样的粒子,有半整数自旋(如1/2,3/2,5/2等);而玻色子是像光子一样的粒子,有整数自旋(如0,1,2等)。这种自旋差异使费米子和玻色子有完全不同的特性。没有任何两个费米子能有同样的量子态:它们没有相同的特性,也不能在同一时间处于同一地点;而玻色子却能够具有相同的特性。

基本粒子中所有的物质粒子都是费米子,是构成物质的原材料(如轻子中的电子、组成质子和中子的夸克、中微子);而传递作用力的粒子(光子、介子、胶子、W 和Z玻色子)都是玻色子。

玻色子在我们的宇宙只占了一半的份额,剩下一半是由费米子组成的物质世界。玻爱凝聚态只能由玻色子来形成实在是太遗憾了。那么为什么费米子无法形成玻爱凝聚态呢?

意大利物理学家恩里科·费米和美国物理学家狄拉克指出:由于费米子具有半整数自旋,他们的相互作用会遵循泡利不相容原理(这条规则不适用于玻色子)。这条原理指出:任何两个费米子都不可能具有同样的量子态,从而在空间排布上,无法处在同一位置,当一个费米子占据了最低的能级以后,其它的费米子只能依次往外排列了。这条非常重要的原理排除了很紧密地挤在一起的费米子群的可能性,所以即使在绝对零度时,这些费米子仍然不能达到全同而凝聚起来,这些细微的差异导致他们走在一起时总是先来靠里,后来者往外排队的现象。

但是费米子占据了我们宇宙太重要的地位,它是物质世界的基石。此外,人类长久以来寻求的高温超导梦想仍然无法从理论上得到突破,至今人类一直无法突破—135°C以上的界限而使超导发生。电子作为费米子的一类,如果了解了原子费米子凝聚的机理,对电子费米子的凝聚秘密将彻底揭示出来。并且费米冷凝体中的可见实物原子对非常相似地模拟了超导体中电子对的组成,成为一个看得见的工具,人们再也不必从纯粹的想象中寻找超导秘密的暗道。

比梦更离奇的狂想曲

当前世界,粒子与凝聚态物理学领域的顶尖物理学家梦寐以求的这种物质状态就是所谓的“费米子凝聚态”,费米子凝聚态,从语意分析来说,费米子的物理含义

相关文档
最新文档