导航定位技术概论论文
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导航定位技术概论论文
一、引言
卫星导航系统已成为当今发达国家国防及经济基础的重要组成部分,是国家综合国力及科学技术发展水平的重要标志之一。自20世纪50年代人造地球卫星上天以来,最具经济实力和空间技术水平的美国和苏联先后建成了两代卫星导航系统。今天,GPS和GLONASS不但是导航史上的重大贡献,成为国防和和国家兴旺最具影响力的因素,而且已步入人们的生活,成为交通方便、繁荣物流、丰富生活的工具。导航定位的需求,可以说不是历来就有的,在人类早期物质生产活动中以牧猎为主,日出而作,日落而息。当时人们离不开森林和水草,或是随着水草的兴衰而漂泊不定,根本不需要什么明确的定位。但是,随设社会的发展,到了农业时代,在人们开发农田,兴修水利等相应活动中就逐渐产生了测绘定位的需求,可以说在这时,导航定位就在慢慢酝酿之中。等到了工业时代,人类的活动遍及全球,而一些工程比如航海、航空、洲际交通工程,通信工程,矿产资源勘探工程,地球生态及环境变迁的研究,就需要精确地定位。这些需求促使导航定位技术的发展,并把这项技术带到一个前所未有的发展时期,它的手段也从光学机械过渡到光电子精密机械仪器的时代。社会是不断发展的,科技是不断进步的,20世纪末,出现了电子计算器技术、半导体技术、激光技术、航天科学技术,它们的出现,把人类带到了电子信息时代和航天探索时代。当1957年前苏联发射了人类第一颗人造地球卫星,人类跟踪无线电信号中发现了卫星无线电信号的多普勒频移现象,这预示着一种全新的天空定位技术的可行性,由此,人类进入了卫星定位和导航的时代。主要代表有美国的GPS ,俄罗斯的GLONASS,中国的北斗卫星导航系统等。
正文
导航的定义
将运载体从起始点引导到目的地的技术或方法称为导航。导航一种广义的动态定位,所需的最基本导航参数为运载体的航向、航速和航迹。它的基本作用是引导飞机、船舰、车辆等(总的称作运载体),还有个人,安全准确的沿着所选定的路线,准时地到达目的地。能够提供运载体运动状态,完成引导任务的设备则称为导航定位系统。导航由导航系统完成。任何导航系统中都包括有装在运载体上的导航设备。
导航定位技术的分类
依据导航定位技术的方法不同,可分为航位推算导航、无线电导航、惯性导航、地图匹配、卫星导航和组合导航等等。
(l)航位推算导航
航位推算导航是一种常用的自主式导航定位方法,它是根据运动体的运动方向和航向距离(或速度、加速度、时间)的测量,从过去已知的位置来推算当前的位置,或预期将来的位置,从而可以得到一条运动轨迹,以此来引导航行。
航位推算导航系统的优点是低成本、自主性和隐蔽性好,不受天气和地理条件限制,且短时间内精度较高;其缺点是定位误差会随时间快速积累,不利于长时间工作,另外它得到的是车辆相对于某一起始点的相对位置。目前,航位推算法仍广泛使用在航海、航空和车辆自动定位系统中。
(2)无线电导航
无线电导航的依据是电磁波的恒定传播速率和路径的可测性原理。无线电导航系统是借助于运动体上的电子设备接收无线电信号,通过处理获得的信号来获得导航参量,从而确定运动体位置的一种导航系统。
无线电导航是目前广为发展与应用的导航手段,它不受时间、天气的限制,定位精度高、定位时间短,可连续地、实时地定位,并具有自动化程度高、操作简便等优点。但由于辐射或接收无线电信号的工作方式,使用易被发现,隐蔽性不好。
(3)惯性导航
惯性导航)是以牛顿力学三定律为基础的,将惯性空间的运载体引导到目标地的过程阴。惯性导航系统(Inertial Navigation System, INS)是利用惯性仪表(陀螺仪和加速度计)测量运动载体在惯性空间中的角运动和线运动,根据载体运动微分方程组实时地、精确地解算出运动载体的位置、速度和姿态角。目前应用中的惯性导航系统主要分为两类:机械平台式与捷联式(Gimbaled and Strapdown Systems)。
惯性导航系统的优点是自主性和隐蔽性好,同时具有全天候、多功能,机动灵活等特点,其缺点是定位误差随时间积累,初始对准比较困难,且成本高。
(4)地图匹配
地图匹配(Map Matching, MM)是一种基于软件技术的定位修正方法,将定位轨迹同高精度电子地图道路信息相比较,通过适当的匹配过程确定出车辆最可能的行驶路段及车辆在此路段中最可能的位置。地图匹配过程可分为两个相对独立的过程:一是寻找车辆当前行驶的道路;二是将当前定位点投影到车辆行驶的道路上。估计轨道与精确地图马路的误差可以在估计轨道上的位置点使用一种恰当的正交化方法来消除,这是一种缩小估计轨道与马路或者地理导航线距离误差的最优
方法。
地图匹配的优点是定位精度较高,其缺点是覆盖范围有限,自主性差。
(5)卫星导航
卫星导航是接收导航卫星发送的导航定位信号,并以导航卫星作为动态已知点,实时地测定运动载体的在航位置和速度,进而完成导航。卫星导航系统以全球定位系统(GPS)、全球导航卫星系统(GLONASS)、欧洲伽利略(GALILEO)卫星导航系统和北斗卫星导航定位系统为代表
导航定位技术发展
最古老最简单的导航方法是星历导航,人类通过观察星座的位置变化来确定自己的方位;古代人用鱼骨头充当六分仪,确定航线。最早的导航仪是中国人发明的指南针,几个世纪以来它经过不断地改进而变得越来越精密,并一直被人类广泛应用着;最早的航海表是英国人经过47年的艰苦工作,于1761年发明的,在其随后的几个世纪里,人类通过综合地利用星历知识、指南针和航海表来进行导航和定位。
原理
有超过24颗GPS卫星在离地面1万2千公里的高空上,以12小时的周期环绕地球运行,使得在任意时刻,在地面上的任意一点都可以同时观测到4颗以上的卫星。
由于卫星的位置精确可知,人们可得到卫星到接收机的距离,利用三维坐标中的距离公式,利用3颗卫星,就可以组成3个方程式,解出观测点的位置(X,Y,Z)。考虑到卫星的时钟与接收机时钟之间的误差,实际上有4个未知数,X、Y、Z和钟差,因而需要引入第4颗卫星,形成4个方程式进行求解,从而得到观测点的经纬度和高程。
事实上,接收机往往可以锁住4颗以上的卫星,这时,接收机可按卫星的星座分布分成若干组,每组4颗,然后通过算法挑选出误差最小的一组用作定位,从而提高精度。
由于卫星运行轨道、卫星时钟存在误差,大气对流层、电离层对信号的影响,以及人为的SA保护政策,使得民用导航定位精度只有100米。为提高定位精度,普遍采用差分GPS(DGPS) 技术,建立基准站(差分台)进行GPS观测,利用已