P53综述

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

P53综述

刘仍允(2006年5月)

仅从90年代至今,关于p53作为肿瘤抑制因子的研究报道就有多于20000篇,是什么让p53得到科学界如此多的关注?在27年前(1979年),p53首次被发现。在上世纪80年代,TP53(p53的编码基因)被认为是一个原癌基因(proto-oncogene),直到90年代早期,TP53被广泛认为是一个肿瘤抑制基因,它处在细胞各种胁迫反应途径的十字路口上。p53在细胞周期捕获,DNA修复,细胞衰老、分化、调亡等过程中都起着重要的作用,它能修复损伤细胞,或者除去严重损伤的细胞从而避免这些细胞对机体的危害作用。由于p53的多功能性,在它的编码基因TP53上发现很多突变都会影响到p53的功能。在很多(75%)人的癌症中都存在p53的突变。有关p53的研究已经拓展到毒物学和治疗学领域。

P53基因是迄今发现与人类肿瘤相关性最高的基因。在短短的十多年里,人们对P53基因的认识经历了癌蛋白抗原,癌基因到抑癌基因的三个认识转变,现已认识到,引起肿瘤形成或细胞转化的P53蛋白是P53基因突变的产物,是一种肿瘤促进因子,它可以消除正常P53的功能,而野生型P53基因是一种抑癌基因,它的失活对肿瘤形成起重要作用。

一、P53基因结构及表达

P53基因在人类、猴、鸡和鼠等动物中相继发现后,对其进行了基因定位,人类P53基因定位于17P13.1,鼠P53定位于11号染色体,并在14号染色体上发现无功能的假基因,进化程度迥异的动物中,P53有异常相似的基因结构,约20Kb长,都由11个外显子和10个内含子组成,第1个外显子不编码,外显子2、4、5、7、8、分别编码5个进化上高度保守的结构域,P53基因5个高度保守区即第13~19、117~142、171~19 2、236~258、270~286编码区。P53基因转录成2.5KbmRNA,编码393个氨基酸蛋白,分子量为53KD,P53基因的表达至少受转录及转录后二种水平的调控。在停泊生长或非转化细胞中P53mRNA水平很低,但刺激胞液后mRNA显著增加.持续生长的细胞,其mRNA水平不随细胞周期而出现明显变化,但经诱导分化后mRNA水平降低,部分是转录后调控。P53基因的转录由P1、P2二个启动子控制.P1启动子位于第一外显子上游100~250bp,P2位于第一内含子内,在启动子中包含1个NF1蛋白结合位点和一个转录因子AP1相关蛋白的结合位点,对正常P53基因的转录,不仅需要二个启动子的平衡作用,而且P53基因内含子也起作用,如内含子中有正调控作用,其调控有组织特异性。

二、P53基因产物及功能

P53蛋白N一端为酸性区1~80位氨基酸残基,C-端为碱性区319~393位氨基酸残基,正常的P53蛋白在细胞中易水解,半衰期为20分钟,突变性P53蛋白半衰期为1.4~7小时不等,P53蛋白N端有一个与转录因子相似的酸性结构域,与GAL4的DNA结合区重组时,融合蛋白能激活GAL4操纵子转录,激活功能定位在P53第20~40位密码子,P53 细胞定位及反式激活功能提示,P53蛋白可能直接或通过与其他蛋白作用参与转录控制。

P53蛋白的DNA结合作用及反式激活作用还提示其参与细胞生长调控。通过流式细胞仪测定单个细胞的细胞周期中P53的表达,发现激活的淋巴细胞比未激活者有较多的P53表达,而且随细胞从G1至S期再到G2,M期而增加,提示P53表达与细胞生长的相关性比进入细胞周期或周期中特定时刻为高。以编码反义P53RNA的质粒转染非转化细胞导致细胞生长完全停止,P53抗体注入将进入生长周期的静止细胞。可抑制细胞入S 期,提示P53可能为Go/G1-S转换所必需,但P53抗体对细胞从分裂至S期无作用,G1期细胞有抑制作用的二丁酸钠也抑制P53合成,这些结果提示P53对细胞生长调控作用至少表现在从G0-G1,或G1-S,但其作用机理尚未弄清楚。目前认为,P53蛋白可通过调控Cipt基因表达而调控细胞生长,即P53蛋白可刺激Cipt基因产生分子量为21KD的蛋白,这种蛋白能够有效抑制某些促使细胞通过细胞周期进入有丝分裂的酶活性,从而抑制细胞生长,此外,

P53的抑制作用还伴随细胞生长核抗原株表达的降低。细胞生长、核抗原参与细胞DNA复制。因此,P53可能通过抑制与DNA复制相关的细胞基因或基因产物而发挥作用。

三、P53的失活机理

P53蛋白与其它蛋白的相互作用,P53基因突变,都可以导致正常生物功能的丧失.

1. P53与蛋白质的相互作用.

一些蛋白质能与P53蛋白作用,导致其正常生物学功能的丧失,DNA肿瘤病毒如HPV16、18、SV40和腺病毒编码癌蛋白,引起宿主细胞的恶性病变,这些癌蛋白如SV40T 抗原、腺病毒ELa、ELb、HPVE6能与Rb,P53结合。Scheffner证实,HPVE6结合P53后,启动细胞内蛋白酶降解P53,从而降低P53正常功能。而SV40T,腺病毒ELb没有发现这种降解作用方式。此外,P53还可以被细胞基因产物相互作用而失活,如MDM2可结合P53而使其失活,在一些常见的人类肉瘤中,都有MDM2基因扩增,这种扩增可能干扰P53的正常功能。

2. P53基因突变

P53正常功能的丧失,最主要的方式是基因突变,通过肿瘤中大量的突变体分析,证实大部分突变是位于4个突变热点之一的错义突变。这4个突变热点是aa129~146、171~179、234~260、270~287,正对应于P53基因进化最保守区段,体外实验证实突变体失去特异位点的结合能力,此外,突变体还可以改变P53的球形构象。例如,一些突变体可与热体克蛋白结合,一些突变引起213~217肽段的暴露,另外,一些则引起酸性激活结构域的改变,这些突变提示P53的微小改变可引起远离突变位点区段甚至整个蛋白构象的改变。构象的改变不仅影响突变体,还影响野生型的功能。实验证明,野生型突变体组成的四聚体不能与结合位点结合,也丧失对目的基因的方式激活作用,突变体对野生型的结合失活。可以解释内源野生型P53的负调控作用的解除,从而引起细胞恶性病变,随着研究的深入,对P53突变有了新的认识,Dan等认为肿瘤中P53突变可分为三类:①零突变:即突变体无功能,不参与相互作用;②负突变:即失去负调控功能,并能使野生型失活,但并不直接参与致癌;③正突变:失去负调控功能,并获得转化能力,这种突变体可直细胞恶性转化中代替癌基因起启动作用。

目前认为,P53失活机理是,野生型P53以四聚体形式与特异位点结合,反式激活下游生长抑制基因的表达,一系列的方式能使P53失活,在一些肿瘤中,单一或两个P53位点的丧失降低四聚体浓度,无义突变造成P53翻译中断,C端酸性结构域的丢失影响四聚体形成;最常见的是错义突变,野生型与突变体形成更稳定的四聚体,丧失正常功能。

四、P53突变与肿瘤

P53基因与人类50%的肿瘤有关,目前发现的有肝癌、乳腺癌、膀胱癌、胃癌、结肠癌、前列腺癌、软组织肉瘤、卵巢癌、脑瘤、淋巴细胞肿瘤、食道癌、肺癌、成骨肉瘤等,人类肿瘤中P53突变主要在高度保守区内,以175、248、249、273、282位点突变最高,不同种类肿瘤不同,如结肠癌和乳腺癌有相似的流行病学(包括地区分布和危险因素),但P53突变谱并不一致。结肠癌G:CA:T转换占79%,而且多数CpG,二核苷酸位点,50%以上转换突变发生在第3~5结构域的CpGC位于码子175、248、273);在乳腺癌中,只发现13%的转换在CpG位点。此外,G-T颠换在乳腺癌占1/4,但在结肠癌T分罕见.淋巴瘤和白血病的P53,突变方式与结肠癌相似,即大部分突变为CPG位点的转换,G→T颠换较低,A:T→G:C在A:T位点突变较高。佰基特淋巴瘤与其它B细胞淋巴瘤和T淋巴细胞恶性病变的P53突变谱相似,但佰基特淋巴瘤的转换突变较高。在非小细胞肺癌中G:C→T:A最普遍,食道癌颠换率很高,与肺癌不同的是,G:C和A:T位点有相似的突变率。我国启东地区50%为249癌码子的G→C、G→T颠换,而南非肝癌80%为G→T颠换.骨肉瘤中P53突变率为

相关文档
最新文档