化工进展-微反应器综述

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微反应器研究进展与应用

龙立 S141101059

摘要:微反应器作为微化工系统的核心设备,是实现化工过程强化的重要技术基础,近年来逐渐成为国际化工技术领域研究的热点。本文介绍了微反应器的原理及其研究进展,阐明了微反应器技术的特点,列举微反应器的应用范围与实例,说明了微反应器的发展前景。

关键词:微反应器,微反应系统。

1绪论

微化工技术是20世纪90年代初顺应可持续发展与高技术发展的需要而兴起的多学科交叉的科技前沿领域。它是集微机电系统设计思想和化学化工基本原理于一体并移植集成电路和微传感器制造技术的一种高新技术,涉及化学、材料、物理、化工、机械、电子、控制学等各种工程技术和学科。主要研究对象为特征尺度在微米到数百微米间的微化工系统,常贵尺度的化工过程通常依靠大型化来达到降低产品成本的目的,而微化工过程则注重于高效、快速、灵活、轻便、易装卸、易控制、易直接放大及高度集成等方面[1]。

将部分核心化工装备小型化、微型化的方法是促进化工过程强化的有效手段,它是实现化工过程安全、高效和绿色的重要方法之一[2]。化工设备的微小型化是现代化工技术发展的一种新理念,它以微尺度流动、分散和传递的基本原理为核心,能够有效强化反应和分离过程,提升生产效率并且大幅缩小设备的体积,有利于化工新过程的快速开发和产业转化。微型化工器件已成为微型设备的重要组成部分,主要包括微混合器、微型反应器、微型换热器、微化学分析、微型萃取器、微型泵和微型阀门等。

作为微化工技术核心部件的微反应器,其内部通道特征尺度在微尺度范围(10-500μm),远小于传统反应器的特征尺寸,但对分子水平而言已然非常大,故利用微反应器并不能改变反应机理和本征动力学特性,而是通过改变流体的传热、传质及流动特性来强化化工工程的。

2微反应器

微结构反应器(简称微反应器)是重要的微化工设备之一,是实现化工过程微小型化的核心装备。在微化工过程中微反应器担负起了完成反应过程、提

高反应收率、控制产物形貌以及提升过程安分离回收难度和成本、减少过程污染等具有重要的意义。针对不同过程特点开发出的微反应器不仅形式多样,其配套的工艺技术也与传统化工过程存在一定区别,利用集成化的微反应系统可以实现过程的耦合,因此微反应技术的发展也同时带动了化工工艺的进步。

微反应器起源于20世纪90年代,21世纪初叶是微尺度反应技术的快速发展期。在基础研究方面,随着对微尺度多相流动、分散、聚并研究的不断深入,微反应器内多相流型,分散尺度调控机制以及微分散体系的大批量制备规律等问题逐渐被人们深入理解。基于微反应器内微小的流体分散尺度、极大的相间接触面积等特点可以有效强化相间传质和混合过程,从而为反应过程的强化奠定基础。

研究结果表明,利用微反应器能够有效强化受传递或混合控制的化学反应过程,而这类过程在传统的反应装置内往往难以精确控制,极易产生局部热点、浓度分布不均、短路流和流动死区等问题,微反应器具有的高效混合和快速传递性能是解决这些问题的重要手段。

微反应器的分类。对于不同相态的反应过程,微反应器可以分为气固催化微反应器、液液催化微反应器、气液微反应器和气液固三相催化微反应器等。根据输入能量的不同,可分为非动力式微反应器和动力式微反应器。按照微结构的不同可分为:微通道反应器、毛细管微反应器、降膜式微反应器、多股并流式微反应器、微孔阵列和膜分散式微反应器以及外场强化式微反应器等[4]。

2.1微反应器的微混合机理

微反应器具有与大反应器完全不同的几何特性:狭窄规整的微通道、非常小的反应空间和非常大的比表面积[3]。微反应器及其他微通道设备的通道特征尺寸(当量直径)数量级是微米级。传统混合过程依赖于层流混合和湍流混合。微化工系统中,由于通道特征尺度在微米级,雷诺数远<2 000,流动多呈层流,因此微流体混合过程在很大程度上是主要基于扩散混合机制,而不借助于湍流。这个过程通常是在很薄的流体层之间进行,其基本混合机理如下。

(1)层流剪切在微混合器内引入2次流,使流动截面上不同流线之间产生相对运动,引起流体微元变形、拉伸继而折叠,增大待混合流体间的界面面积、减少流层厚度。

(2)延伸流动由于流动通道几何形状的改变或者由于流动被加速,产生延伸

效应,使的流层厚度进一步减小,改进混合质量。

(3)分布混合在微混合器内集成静态混合元件,通过流体的分割重排再结合效应,减小流层厚度,并增大流体间的界面。

(4)分子扩散分子水平均匀混合的必经之路。在常规尺度混合器中,只有当剪切、延伸和分布混合使流层厚度降至足够低的水平时,分子水平的混合才有意义。而在微混合器中,由于微通道当量直径可低至几个微米,依据Fick定律:

t≈l2 D

式中:D——扩散系数;

L——扩散特征尺度;

T——混合时间。

当混合流体处于同一微通道内时,分子扩散路径大大缩短,因此仅依靠分子扩散就可在极短的时间内(毫秒至微秒级)实现均匀混合。

2.2微反应器的特点

微反应器的特性决定了它在特定化学和化工领域的应用,有着大反应器无法比拟的优越性,主要表现在以下几个方面。

(1)面积体积比的增大和体积的减小.在微反应设备内,由于减小了流体厚度,相应的面积体积比得到了显著的提高。通常微通道设备的比表面积可以达到10 000-50 000 m2/m3,而常规实验室或工业设备的比表面积不会超过l 000m2/m3或100 m2/m3。因此,比表面积的增加除了可以强化传热外,也可以强化反应过程,例如,高效率的气相催化微反应器就可以采用在微通道内表面涂敷催化剂的结构。目前已有的界面积最大的微反应器为降膜式微反应器,其界面积可以达到25000 m2/m3,而传统鼓泡塔的界面积只能达到100m2/m3,即使采用喷射式对撞流的气液接触式反应器的比表面积也只能达到2 000 m2/m3左右。若在微型鼓泡塔中采用环流流动,理论上其比表面积可以达到50 000 m2/m3以上。

(2)小试工艺不需中试可以直接放大:精细化工行业多数使用间歇式反应器。小试工艺放大到大的反应釜,由于传热传质效率的不同,工艺条件一般都要通过实验来修改以适应大的反应器。一般的流程都是:小试"中试"大生产。而利用微反应器技术进行生产时,工艺放大不是通过增大微通道的特征尺寸,而是通过增加微通道的数量来实现的。所以小试最佳反应条件不需要做任何改变就可以直接

相关文档
最新文档