物理学原理在工程技术中的应用(学习资料)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物理原理与工程技术

内容提要:

本书以通俗的语言介绍了物理原理与工程技术的关系,介绍了力学、热学、电磁学、光学、相对论、原子物理、半导体物理、凝聚态物理等知识及其在工程技术中的应用。特别强调物理知识在现代高新技术中的应用。全书分为15章,包括:力学原理与工程技术、流体力学与流体机械、机械波与声学技术、热能与动力、电磁理论与电磁技术、电磁波与无线电技术、半导体物理与微电子技术、传统光学技术、现代光学技术、物理效应与传感技术、真空技术及其应用、能源技术、现代测试技术、高能物理与加速器、新型功能材料。

本书主要供大专院校各类学生和工程技术人员学习使用,也可作为中学生开展素质教育和一般读者了解物理知识与工程技术关系的参考读物。编辑推荐:

本书试图以“从自然到物理、从物理到技术、从技术到生活”为脉络,所讲述的内容既有工程应用背景又与物理学原理相配套,能够使读者拓宽视野,加深其对物理学基本原理及物理学在工程技术领域前沿作用的理解。本书从工程实际出发,避开技术细节,把实际问题抽象成物理模型,并用物理学原理进行分析,提出合理的解决方案,有利于提高读者分析和解决问题的能力;在工程技术应用的具体介绍上,把侧重点放在物理原理和它在生产、生活中的应用上,而不是放在其结构和制造工艺上,并力求做到通俗易懂。主要内容包括:力学原理与工程技术、流体力学与流体机械、机械波与声学技术、热能与动力、电磁理论与电磁技术等。目录:

第一章力学原理与工程技术

第一节动量守恒定律与火箭推进原理

一、动量守恒定律

二、火箭推进原理

第二节力学原理与惯性导航

一、牛顿力学的基本内容

二、陀螺仪

三、加速度计

四、惯性导航

第三节万有引力定律与人造卫星

一、万有引力定律

二、人造卫星

三、同步卫星的发射高度和运行速度

四、人造地球卫星的应用

五、载人航天

六、航天科技产业

第四节相对论力学与相对论效应

一、相对论的建立

二、狭义相对论效应

三、广义相对论效应和实证

第二章流体力学与流体机械

第一节伯努利方程及其应用

一、伯努力利方程

二、伯努利方程的应用

第二节液压传动技术

一、液压传动的发展

二、液压传动的工作原理

三、液压传动的特性

四、液压传动的特性

五、液压传动的优缺点

第三节水泵、质量流量计、压力表

一、水泵

二、质量流量计

三、压力测量仪表

第四节毛细现象

一、浸润与不浸润液体

二、毛细现象

三、毛细现象的应用

第五节空气动力学与航空航天技术

一、空气动力学

二、空气动力学与航空航天事业第六节风洞和风洞实验技术

一、风洞

二、风洞实验

三、风洞实验技术

第三章机械波与声学技术

第四章热能与动力

第五章电磁理论与电磁技术

第六章电磁波与无线电技术

第七章半导体物理与微电子技术第八章传统光学技术

第九章现代光学技术

第十章物理效应与传感技术

第十一章真空技术及其应用

第十二章能源技术

第十三章现代测试技术

第十四章高能物理与加速器

第十五章新型功能材料

参考文献

1、物理学概览

物理学是研究宇宙间物质存在的基本形式、性质、运动和转化、内部结构等方面,从而认识这些结构的组成元素及其相互作用、运动和转化的基本规律的科学。

物理学的各分支学科是按物质的不同存在形式和不同运动形式划分的。人对自然界的认识来自于实践,随着实践的扩展和深入,物理学的内容也在不断扩展和深入。

随着物理学各分支学科的发展,人们发现物质的不同存在形式和不同运动形式之间存在着联系,于是各分支学科之间开始互相渗透。物理学也逐步发展成为各分支学科彼此密切联系的统一整体。

物理学家力图寻找一切物理现象的基本规律,从而统一地理解一切物理现象。这种努力虽然逐步有所进展,但现在离实现这—目标还很遥远。看来人们对客观世界的探索、研究是无穷无尽的。

经典力学

经典力学是研究宏观物体做低速机械运动的现象和规律的学科。宏观是相对于原子等微观粒子而言的;低速是相对于光速而言的。物体的空间位置随时间变化称为机械运动。人们日常生活直接接触到的并首先加以研究的都是宏观低速的机械运动。

自远古以来,由于农业生产需要确定季节,人们就进行天文观察。16世纪后期,人们对行星绕太阳的运动进行了详细、精密的观察。17世纪开普勒从这些观察结果中总结出了行星绕日运动的三条经验规律。差不多在同一时期,伽利略进行了落体和抛物体的实验研究,从而提出关于机械运动现象的初步理论。

行星运动第一定律认为每个行星都在一个椭圆形的轨道上绕太阳运转,而太阳位于这个椭圆轨道的一个焦点上。行星运动第二定律认为行星运行离太阳越近则运行就越快,行星的速度以这样的方式变化:行星与太阳之间的连线在等时间内扫过的面积

相等。十年后开普勒发表了他的行星运动第三定律:行星距离太阳越远,它的运转周期越长;运转周期的平方与到太阳之间距离的立方成正比。

牛顿深入研究了这些经验规律和初步的现象性理论,发现了宏观低速机械运动的基本规律,为经典力学奠定了基础。亚当斯根据对天王星的详细天文观察,并根据牛顿的理论,预言了海王星的存在,以后果然在天文观察中发现了海王星。于是牛顿所提出的力学定律和万有引力定律被普遍接受了。

经典力学中的基本物理量是质点的空间坐标和动量:一个力学系统在某一时刻的状态,由它的某一个质点在这一时刻的空间坐标和动量表示。对于一个不受外界影响,也不影响外界,不包含其他运动形式(如热运动、电磁运动等)的力学系统来说,它的总机械能就是每一个质点的空间坐标和动量的函数,其状态随时间的变化由总能量决定。

在经典力学中,力学系统的总能量和总动量有特别重要的意义。物理学的发展表明,任何一个孤立的物理系统,无论怎样变化,其总能量和总动量数值是不变的。这种守恒性质的适用范围已经远远超出了经典力学的范围,现在还没有发现它们的局限性。

早在19世纪,经典力学就已经成为物理学中十分成熟的分支学科,它包含了丰富的内容。例如:质点力学、刚体力学、分析力学、弹性力学、塑性力学、流体力学等。经典力学的应用范围,涉及到能源、航空、航天、机械、建筑、水利、矿山建设直到安全防护等各个领域。当然,工程技术问题常常是综合性的问题,还需要许多学科进行综合研究,才能完全解决。机械运动中,很普遍的一种运动形式就是振动和波动。声学就是研究这种运动的产生、传播、转化和吸收的分支学科。人们通过声波传递信息,有许多物体不易为光波和电磁波透过,却能为声波透过;频率非常低的声波能在大气和海洋中传播到遥远的地方,因此能迅速传递地球上任何地方发生的地震、火山爆发或核爆炸的信息;频率很高的声波和声表面波已经用于固体的研究、微波技术、医疗诊断等领域;非常强的声波已经用于工业加工等。

热学、热力学和经典统计力学

热学是研究热的产生和传导,研究物质处于热状态下的性质及其变化的学科。人们很早就有冷热的概念。对于热现象的研究逐步澄清了关于热的一些模糊概念(例如区分了温度

相关文档
最新文档