车辆识别相关中英文翻译
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
伊朗车牌识别使用连接组件和聚类技术
H.R.艾因Moghassemi 伊斯兰阿萨德大学(西德黑兰)伊朗德黑兰
摘要
车牌识别系统(LPR),在许多应用发挥了重要作用,如访问控制,流量控制,被盗车辆的检测。一个车牌识别系统可分为检测和识别阶段。对于车牌检测,有一些相关的建议和方法,就是对于水平板块和垂直板块的检测。车牌的准确的定位是认识到连接的成分分析和聚类技术研究。由于对车辆定位的是摄像头,车牌矩形可以旋转所以在许多方面都会产生倾斜。因此倾斜检测和校正车牌就很有必要。在这项研究中一个有效的歪斜检测和识别方法是泽尼克旋转和尺度小波矩特征不变法用于车牌字符识别。和以上不同的是演算法是在强光照条件下,视角,位置,大小和颜色在复杂的环境中运行时处理车牌。“成功是在各种条件整体性能达到车牌用于车牌识别系统时的93.54%。
关键词:
车牌识别;倾斜检测;斜线改正;泽尼克和小波矩;旋转和尺度不变。
一,导言
LPR(车牌识别)是一种用于识别车辆牌照的图像处理技术。LPR系统中使用于各种安全和交通应用,例如在图1。LPR系统是用来在网关的访问控制。在图1:当车辆到达大门时,自动车牌识别系统“读”车牌字符,与预定义的列表比较,如果有一个匹配则打开大门。“LPR系统是在1976年首次由英国的分公司在警察科学开发。原型LPR系统是在1979年工作。自1994年以来,伊朗第一个研究LPR系统的工作,开始在伊朗大学科技和技术(IUST)和控制交通总公司开始实行[1]。
车牌识别使用图像处理软件分析图像捕捉车辆和定位提取车牌; 然后用光学字符识别(OCR)系统对车辆图像进行车牌字符识别。他们还利用在各种警察,军队和使用电子收费payper道路和交通的分类活动或个人。LPR可以用来存储由相机拍摄的图像以及一些车牌字符和数字,并且存储驱动程序。LPR系统使用红外照明或图像加工技术,让相机拍摄照片处理。
车牌识别系统的软件部分运行于中央,可以连接电脑和其他应用程序或数据库。该软件进行车牌识别需要6种算法,如下:
1,车牌的位置:查找和提取在图像上的车牌。
2,车牌定位和缩放:调整的车牌歪斜度到所需的角度和大小尺寸,然后进行特征提取和识别。
3,正常化和二值化:调整车牌图像的亮度和对比度,将车牌图像转换为合适
阈值的二进制图像。
4,字符分割:对车牌上各个字符分割开来。
5,光学字符识别(OCR):认识到车牌图像字符的特征。
6,句法和几何分析:检查车牌字符和位置。
这些算法的复杂性决定了车牌识别系统整体的精度。本文的其余部分安排如下:在第2节,提出有关工程在LPR的所有阶段与相关文献进行了系统的介绍和讨论。车牌预处理在第3节。车牌检测算法是LPR的基础和初级阶段,在第4节详细讨论。第5节是关于车牌倾斜检测校正。车牌字符识别在第6节,最后,实验结果提出在第7节。
二,有关工程
各种关于LPR系统的研究和工程应用,如停车,安全的访问和控制机密地区,交通执法等可以在[1] [2] [3] [4] [5] [6]看到。如今研究集中到在没有统一的室外光照条件下各种车牌格
式,在图像采集,如背景,光照,车辆的速度,相机之间的距离不同。因此,大多数的方法都有工作限制条件,如固定照明,有限车辆行驶速度,选择的路线,和固定的背景。上一节所述的车牌识别系统由四个主要阶段构成:捕捉车辆的形象,定位和提取的车牌,字符分割和正常化,光学字符识别。采集捕捉图像由相关硬件和摄像头完成。车牌定位和分割的LPR 系统的重要阶段。由于各种光照条件和复杂的背景,以寻找车牌的地方应予以考虑。还有噪音,污染等可能会影响车牌的识别。关于定位识别车牌的许多研究基于边缘检测,遗传算法,神经网络等。大多数建议的方法对车牌的亮度敏感,有很多的处理并没有强大到足以在各种环境条件下发现车牌,独立地进行车牌识别[7]。在这项研究中,计算车牌内的每一个字符,并考虑为下一代阶段特征提取和识别。车牌字符识别,已经出现了波斯语/阿拉伯语大量的光学字符识别技术。在本研究中一种新型的旋转不变泽尼克和小波矩的方法用于基地波斯语/阿拉伯语光学字符识别[8]。
三,车牌预处理
本文是关于伊朗的一些样品车牌如图所示。2。车牌图像在不同的照明情况下被捕获,其中包括白昼,午夜,阴影和扭曲的条件。伊朗的车牌被归类为个人,政府,公共服务和出租车,其中包括不同类型背景和前景。不同牌照的亮度可能会有所不同,因为车牌的位置和不同的照明环境。在预处理,应将车牌图像过滤将其转换为二进制格式。将图像转换为二进制完成全局和局部阈值。由于全局阈值在不同光照条件下不能总是产生满意的结果,所以合适的方法是局部阈值转换车牌为二进制格式的图像。在这种情况下,车牌图像分为M,N个子图像,然后每个子图像局部阈值转换为二进制。在这项研究中OTSU算法用于计算局部阈值[9],[10]。
四,车牌检测
车牌检测是LPR系统的一个重要阶段,建议的方法应与前面的章节不同。建议进行两个阶段进行。在第一阶段车牌图像上没有用处的地区进行出车牌夹角水平和垂直预测。图3显示了车牌图像水平和垂直方向的预测。垂直和图像的水平推算,是一维信号,这代表了图像的整体幅度分别根据Y轴和X轴。垂直和水平按照定义的预测方程:
其中,W和H是减值的。在第二使用阶段,连接成分分析和聚类上段的车牌字符。连接的组件分析(CCA)是一个众所周知的图像处理技术,扫描图像和标签的像素成组件基于像素和以某种方式相互连接(无论是四连接或八连接的)。面积,质心和边界框连接使用集群。层次聚类程序是最常用的方法分组连接的部件。连接的结果成分分析和聚类样本图像车牌如图3所示。
五,倾斜检测与校正
由于对车辆定位的是摄像头,所以车牌的矩形可以旋转因此通常都会倾斜。由于偏斜大大降低识别能力,所以要实施额外机制检测和纠正偏斜车牌。这种方法的基本问题是确定一个角度,根据车牌歪斜。歪斜检测,第一次与连接成分分析计算车牌的所有字符的重心在图4。
左边和右边的字符,然后与协调的倾斜角度计算如下:
在图4左边和右边的字符,然后相关的例句协调的倾斜角度计算如下: